Инструменты сайта


Страница — в разработке. Начало работ — 08.03.2014, окончание — ??.??.????

Симметричная матрица

В настоящем разделе симметричная матрица предполагается вещественной.

Матрица имеет вид $$ A=\left( \begin{array}{ccccc} a_{11} & \color{Red}a_{12} & \color{Blue}a_{13} & \dots & \color{Green}a_{1n} \\ \color{Red}a_{12} & a_{22} & \color{Grey}a_{23} & \dots & \color{Cyan}a_{2n} \\ \color{Blue}a_{13} & \color{Grey}a_{23} & a_{33} & \dots & a_{3n} \\ \vdots & & & \ddots & \vdots \\ \color{Green}a_{1n} & \color{Cyan}a_{2n} & a_{3n} & \dots & a_{nn} \end{array} \right) ; $$ характеризуется свойством $$ A^{\top}=A \ . $$ Для задания симметричной матрицы порядка $ n_{} $ необходимо, в общем случае, задать $ C_n^2=n(n-1)/2 $ ее элементов — стоящих на главной диагонали и выше ее (или ниже).

Т

Теорема. Для любой матрицы $ A_{} $ матрицы $ A_{}A^{\top} $ и $ A^{\top} A $ — симметричны. Для любой квадратной матрицы $ A_{} $ матрица $ A_{}+A^{\top} $ — симметрична.

Определитель

Распишем полное разложение определителя симметричной матрицы с символьными (буквенными) элементами: $$ \det A_{3\times 3} = a_{11}a_{22}a_{33}-a_{11}a_{23}^2-a_{12}^2a_{33}+2\,a_{12}a_{13}a_{23}-a_{13}^2a_{22} \ ; $$ $$ \det A_{4\times 4} = a_{11}a_{22}a_{33}a_{44}-a_{11}a_{22}a_{34}^2-a_{11}a_{23}^2a_{44}+2\,a_{11}a_{23}a_{24}a_{34}- $$ $$ -a_{11}a_{24}^2a_{33}-a_{12}^2a_{33}a_{44}+a_{12}^2a_{34}^2+2\,a_{12}a_{13}a_{23}a_{44}-2\,a_{12}a_{23}a_{14}a_{34}- $$ $$ -2\,a_{12}a_{24}a_{13}a_{34}+2\,a_{12}a_{24}a_{14}a_{33}-a_{22}a_{13}^2a_{44}+2\,a_{13}a_{22}a_{14}a_{34}+ $$ $$ +a_{13}^2a_{24}^2-2\,a_{13}a_{24}a_{14}a_{23}-a_{22}a_{14}^2a_{33}+a_{14}^2a_{23}^2 \ . $$

Т

Теорема [Кэли]. В полном разложении определителя симметричной матрицы порядка $ n $ обозначим $ \mathfrak s_n $ число слагаемых, $ \mathfrak s_n^{(+)} $ — число слагаемых с положительным знаком, $ \mathfrak s_n^{(-)} $ — число слагаемых с отрицательным знаком, а $ \mathfrak d_n =\mathfrak s_n^{(+)} - \mathfrak s_n^{(-)} $. Имеют место соотношения: $$ \mathfrak s_{n+1}=(n+1)\mathfrak s_n- C_n^2 \mathfrak s_{n-2} \ ; $$ $$ \mathfrak d_{n+1}=-(n-1)\mathfrak d_n- C_n^2 \mathfrak d_{n-2} \ . $$

=>

Имеют место пределы: $$ \lim_{n\to \infty} \frac{\sqrt{n} \mathfrak s_n }{n!} = \frac{e^{4/3}}{\sqrt{\pi}} \ ;\ \lim_{n\to \infty} \frac{(-1)^{n-1}\sqrt{n^3} \mathfrak d_n }{n!} = \frac{e^{-4/3}}{2\,\sqrt{\pi}} \ . $$

Миноры: тождества Кронекера

Т

Теорема [Кронекер]. Для симметричной матрицы $ A_{} $ порядка $ n \ge k+1 $ имеет место тождество

$$ A\left(\begin{array}{ccccc} 1 & 2 & \dots & k-2 & k \\ 2 & 3 & \dots & k-1 & k+1 \end{array} \right)- A\left(\begin{array}{ccccc} 2 & 3 & \dots & k-1 & k \\ 1 & 2 & \dots & k-2 & k+1 \end{array} \right)= $$ $$ = A\left(\begin{array}{cccccc} 1 & 2 & \dots & k-3 & k-2 & k-1 \\ 2 & 3 & \dots & k-2 & k & k+1 \end{array} \right) \ , $$ связывающее три ее минора порядка $ k-1 $.

П

Пример. Для $ k=4 $:

$$ A\left(\begin{array}{ccc} 1 & 2 & 4 \\ 2 & 3 & 5 \end{array} \right)- A\left(\begin{array}{ccc} 2 & 3 & 4 \\ 1 & 2 & 5 \end{array} \right)= A\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 4 & 5 \end{array} \right) $$ $$ \iff \ \left| \begin{array}{lll} a_{12} & a_{13} & a_{15} \\ a_{22} & a_{23} & a_{25} \\ a_{24} & a_{34} & a_{45} \end{array} \right|- \left| \begin{array}{lll} a_{12} & a_{22} & a_{25} \\ a_{13} & a_{23} & a_{35} \\ a_{14} & a_{24} & a_{45} \end{array} \right|= \left| \begin{array}{lll} a_{12} & a_{14} & a_{15} \\ a_{22} & a_{24} & a_{25} \\ a_{23} & a_{34} & a_{35} \end{array} \right| \ . $$

Ранг

В настоящем разделе минор матрицы $ A $ $$ A\left( \begin{array}{lll} j_1 & \dots & j_k \\ j_1 & \dots & j_k \end{array} \right) = \left|\begin{array}{cccc} a_{j_1j_1} & a_{j_1j_2} & \dots & a_{j_1j_k} \\ a_{j_2j_1} & a_{j_2j_2} & \dots & a_{j_2j_k} \\ \vdots & & \ddots & \vdots \\ a_{j_kj_1} & a_{j_kj_2} & \dots & a_{j_kj_k} \end{array} \right| , \quad 1\le j_1<j_2< \dots < j_k \le n $$ составленный из элементов матрицы, стоящих в строках и столбцах с одинаковыми номерами, будет называться ведущим минором $ k $-го порядка матрицы $ A $. В частном случае $ j_1=1, j_2=2,\dots,j_k=k $ этот минор будет называться главным минором $ k $-го порядка матрицы $ A $.

§

См. замечание о терминологии ЗДЕСЬ.

Т

Теорема. Если $ \mathfrak r = \operatorname{rank} (A)\ge 1 $, то в матрице $ A $ существует ненулевой ведущий минор порядка $ \mathfrak r $.

Произведение

Произведение симметричных матриц — не обязательно симметричная матрица!
T

Теорема. Для того, чтобы произведение симметричных матриц $ A $ и $ B $ было симметричной матрицей необходимо и достаточно, чтобы матрицы $ A $ и $ B $ коммутировали: $ AB = BA $.

Обратная матрица

Т

Теорема. Обратная к симметричной матрице (если существует) будет симметричной матрицей.

Характеристический полином, собственные числа, собственные векторы

Т

Теорема 1. Все собственные числа симметричной матрицы вещественны.

Доказательство ЗДЕСЬ.

=>

Если $ \lambda=0 $ корень кратности $ \mathfrak m $ характеристического полинома симметричной матрицы $ A $, т.е. $$ \det (A-\lambda E)\equiv(-1)^n \lambda^n+a_1\lambda^{n-1}+\dots+a_{n-\mathfrak m} \lambda^{\mathfrak m} \quad npu \ a_{n-\mathfrak m}\ne 0 $$ то $ \operatorname{rank} (A)=n-\mathfrak m $.

=>

Если в характеристическом полиноме некоторый коэффициент $ a_j $ при $ j \not\in \{0,n\} $ обращается в нуль, то соседние с ним в нуль не обращаются и имеют различные знаки: $ a_{j-1} a_{j+1} < 0 $.

Т

Теорема 2. Собственные векторы, принадлежащие различным собственным числам симметричной матрицы $ A_{} $, ортогональны, т.е. если $ \mathfrak X_1 $ принадлежит собственному числу $ \lambda_{1} $, а $ \mathfrak X_2 $ принадлежит собственному числу $ \lambda_{2} $ и $ \lambda_1 \ne \lambda_2 $, то $$ \langle \mathfrak X_1, \mathfrak X_2 \rangle =0 \ , $$ где $ \langle \ ,\ \rangle $ означает скалярное произведение, определяемое стандартным образом: $ \langle X,Y \rangle=x_1y_1+\dots+x_ny_n $.

Доказательство. Если $ {\mathbf A}{\mathfrak X}_1=\lambda_1 {\mathfrak X}_1, {\mathbf A}{\mathfrak X}_2=\lambda_2 {\mathfrak X}_2 $ и $ \lambda_1 \ne \lambda_2 $, то $$ a= {\mathfrak X}_2^{^{\top}} {\mathbf A}{\mathfrak X}_1 =\left\{\begin{array}{ll} {\mathfrak X}_2^{^{\top}} \lambda_1 {\mathfrak X}_1 & =\lambda_1{\mathfrak X}_2^{^{\top}} {\mathfrak X}_1 ;\\ {\mathfrak X}_2^{^{\top}} {\mathbf A}^{^{\top}}{\mathfrak X}_1 =({\mathbf A}{\mathfrak X}_2)^{^{\top}} {\mathfrak X}_1 & =\lambda_2{\mathfrak X}_2^{^{\top}} {\mathfrak X}_1. \end{array} \right. $$ Тогда  $$ 0=a-a=(\lambda_1 - \lambda_2){\mathfrak X}_2^{^{\top}} {\mathfrak X}_1 \ \Rightarrow \ {\mathfrak X}_2^{^{\top}} {\mathfrak X}_1=0 , $$ т.е. $ {\mathfrak X}_1 \bot {\mathfrak X}_2 $.

Локализация собственных чисел

Т

Теорема [Коши]. Для вещественной симметричной матрицы $ A_{} $ число ее собственных чисел, лежащих на интервале $ ]a,b_{}[ $, определяется по формуле: $$\operatorname{nrr} \{ \det (A-\lambda E) =0 \ | \ a< \lambda<b \}= $$ $$= {\mathcal P}(1, H_1(a), H_2(a),\dots, H_n(a))- {\mathcal P}(1, H_1(b), H_2(b),\dots, H_n(b)) \ . $$ Здесь $ H_1(\lambda), H_2(\lambda),\dots, H_n(\lambda) $ — главные миноры матрицы $ A-\lambda\, E $, а $ {\mathcal P}_{} $ — число знакопостоянств.

Согласно этой теореме, главные миноры матрицы $ A-\lambda\, E $ играют роль системы полиномов Штурма для характеристического полинома симметричной матрицы $ A_{} $.

=>

Если все главные миноры $ A_1,A_2,\dots,A_{n} $ симметричной матрицы $ A_{} $ отличны от нуля, то число положительных собственных чисел матрицы $ A_{} $ равно числу знакопостоянств, а число отрицательных собственных чисел — числу знакоперемен в ряду $ 1,A_1,\dots,A_n $: $$ \operatorname{nrr} \{ \det (A-\lambda E) =0 \ | \ \lambda>0 \} = {\mathcal P}(1,A_1,\dots,A_n), $$ $$ \operatorname{nrr} \{ \det (A-\lambda E) =0 \ | \ \lambda<0 \}={\mathcal V}(1,A_1,\dots,A_n) \ . $$

П

Пример. Локализовать собственные числа матрицы $$ \left( \begin{array}{rrr} 11 & 2 & -8 \\ 2 & 2 & 10 \\ -8 & 10 & 5 \end{array} \right) $$

Решение. $$ H_1(\lambda)=11- \lambda, \ H_2(\lambda)=\lambda^2-13\, \lambda+18, $$ $$ f(\lambda)= H_3(\lambda)=-\lambda^3+18\, \lambda^2 +81\, \lambda -1458 \ . $$

$ \lambda $ $ 1_{} $ $ H_1(\lambda) $ $ H_2(\lambda) $ $ H_3(\lambda) $ $ {\mathcal P} $ Комментарии
$ 0_{} $ $ + $ $ + $ $ + $ $ - $ 2 число положительных =2
$ -10 $ $ + $ $ + $ $ + $ $ + $ 3 собственное число
$ -5 $ $ + $ $ + $ $ + $ $ - $ 2 лежит на $ ]-10,-5[ $
$ 5 $ $ + $ $ + $ $ - $ $ - $ 2 собственное число
$ 10 $ $ + $ $ + $ $ - $ $ + $ 1 лежит на $ ]5,10[ $
$ 15 $ $ + $ $ - $ $ - $ $ + $ 1 собственное число
$ 20 $ $ + $ $ - $ $ + $ $ - $ 0 лежит на $ ]15,20[ $

Проверка. Спектр матрицы: $ \{-9,9,18 \} $.

П

Пример. Локализовать собственные числа матрицы $$ \left( \begin{array}{rrr} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{array} \right) \ . $$

Решение. $$H_1(\lambda)=1- \lambda, \ H_2(\lambda)=\lambda^2+\, \lambda-6, \ f(\lambda)=H_3(\lambda)=-\lambda^3-3\, \lambda^2 +24\, \lambda -28 \ . $$

$ \lambda_{} $ $ 1_{} $ $ H_1(\lambda) $ $ H_2(\lambda) $ $ H_3(\lambda) $ $ {\mathcal P} $ Комментарии
$ 0_{} $ $ + $ $ + $ $ - $ $ - $ 2 число положительных =2
$ -8 $ $ + $ $ + $ $ + $ $ + $ 3 собственное число
$ -6 $ $ + $ $ + $ $ + $ $ - $ 2 лежит на $ ]-8,-6[ $
$ 1.5 $ $ + $ $ - $ $ - $ $ - $ 2 два собственных числа
$ 3_{} $ $ + $ $ - $ $ + $ $ - $ 0 лежат на $ ]1.5,3[ $

Никаким дроблением интервала $ ]1.5\, , \, 3[ $ не удается отделить два вещественных собственных числа. Вывод: имеется кратное собственное число.

Проверка. Спектр матрицы: $ \{-7,2,2 \} $.

Численные методы нахождения собственных чисел

QR-алгоритм поиска всех собственных чисел ЗДЕСЬ.

Часто в приложениях требуется вычислить значения не всех собственных чисел симметричной матрицы, а только небольшого (по сравнению с порядком матрицы) количества максимальных по модулю. Численный метод решения этой задачи изложен ЗДЕСЬ.

Диагонализуемость

Для понимания материалов настоящего пункта требуется знание материалов пункта ДИАГОНАЛИЗУЕМОСТЬ МАТРИЦЫ ОПЕРАТОРА.
Т

Теорема. Существует ортогональная матрица $ P_{} $, приводящая симметричную матрицу $ A_{} $ к диагональному виду:

$$ P^{-1}AP=P^{^{\top}}AP= \left( \begin{array}{cccc} \lambda_1 & & & \mathbb O \\ & \lambda_2 & & \\ && \ddots & \\ \mathbb O&& & \lambda_n \end{array} \right). $$

Доказательство особенно просто в случае когда все собственные числа $ \lambda_1,\dots, \lambda_n $ различны. На основании теоремы 1 матрица $ A_{} $ диагонализуема над множеством вещественных чисел и на основании теоремы 2 матрица $ P $, приводящая к диагональному виду, может быть выбрана ортогональной.

Для общего случая доказательство производится индукцией по порядку $ n $ матрицы $ A $. Окончание доказательства ЗДЕСЬ.

Теорема утверждает что даже при наличии кратных корней у характеристического полинома $$ f(\lambda)=(-1)^n(\lambda - \lambda_1)^{{\mathfrak m}_1} \times \dots \times (\lambda - \lambda_{\mathfrak r})^{{\mathfrak m}_{\mathfrak r}}, \quad {\mathfrak m}_1+\dots+{\mathfrak m}_{{\mathfrak r}}=n, \ \lambda_k \ne \lambda_{\ell} \ npu \ k \ne \ell $$ алгебраическая кратность собственного числа $ \lambda_j $ совпадает с его геометрической кратностью: $$\operatorname{dfc} \, (A-\lambda_j\, E)= {\mathfrak m}_j\, npu \quad \forall j\in \{1,\dots,\mathfrak r\} .$$ Или, что то же: размерность собственного подпространства $$ \left\{X\in \mathbb R^n \, \big| \, (A-\lambda_j\, E)X=\mathbb O_{n\times 1} \right\} $$ равна $ {\mathfrak m}_j $. При нахождении фундаментальной системы решений (ФСР) указанной системы уравнений мы получим $ {\mathfrak m}_j $ линейно независимых собственных векторов $ \{{\mathfrak X}_{j1},\dots, {\mathfrak X}_{j{\mathfrak m}_j} \} $ , принадлежащих $ \lambda_j $. Однако при традиционных способах построения ФСР вовсе не гарантирована ортогональность этих векторов. Как построить ФСР так, чтобы она удовлетворяла условию теоремы, т.е. была ортонормированной? Воспользуемся для этого процессом ортогонализации Грама-Шмидта, применив его к системе $ \{{\mathfrak X}_{j1},\dots, {\mathfrak X}_{j{\mathfrak m}_j} \} $. Результатом процесса будет новая система векторов $ \{{\mathfrak Y}_{j1},\dots, {\mathfrak Y}_{j {\mathfrak m}_j} \} $ такая что ее линейная оболочка совпадает с линейной оболочкой исходной системы: $$ {\mathcal L} \left({\mathfrak Y}_{j1},\dots, {\mathfrak Y}_{j {\mathfrak m}_j} \right)= {\mathcal L} \left({\mathfrak X}_{j1},\dots, {\mathfrak X}_{j{\mathfrak m}_j} \right) \quad \mbox{ и } \quad \langle {\mathfrak Y}_{jk},{\mathfrak Y}_{j\ell} \rangle =0 \ \mbox{ при } \ k \ne \ell \, , $$ т.е. векторы $ {\mathfrak Y}_{j1},\dots, {\mathfrak Y}_{j {\mathfrak m}_j} $ остаются собственными векторами, принадлежащими $ \lambda_j $. Но теперь эти новые векторы попарно ортогональны. Нормировав их, мы получим требуемую теоремой систему из $ {\mathfrak m}_j $ ортогонормированных столбцов матрицы $ P $, соответствующих кратному собственному числу $ \lambda_j $.

П

Пример. Диагонализовать матрицу

$$ A=\left( \begin{array}{rrrrrrrr} 0&1&0&1&0&0&0&-1 \\ 1&0&1&0&0&0&-1&0 \\ 0&1&0&1&0&-1&0&0 \\ 1&0&1&0&-1&0&0&0 \\ 0&0&0&-1&0&1&0&1 \\ 0&0&-1&0&1&0&1&0 \\ 0&-1&0&0&0&1&0&1 \\ -1&0&0&0&1&0&1&0 \end{array} \right) $$ с помощью ортогональной матрицы.

Решение. Имеем: $$ \det (A-\lambda E) \equiv (\lambda-3)(\lambda+3)(\lambda-1)^3(\lambda+1)^3 \, . $$ Ищем собственные векторы. Для простых собственных чисел: $$ \lambda_1=-3 \ \Rightarrow \ \mathfrak X_1=\left[1,-1,1,,-1,-1,1,-1,1\right]^{\top} \ ; $$ $$ \lambda_2=3 \ \Rightarrow \ \mathfrak X_2=\left[-1,-1,-1,-1,1,1,1,1\right]^{\top} \ . $$ Эти столбцы войдут в состав матрицы $ P $, только их надо нормировать: $ \mathfrak X_{j} /|\mathfrak X_{j}| $. Для кратных собственных чисел $ \lambda_j \in \{-1,1\} $ сначала находим произвольные ФСР $$ \lambda_3=1 \ \Rightarrow \ \left\{\begin{array}{rrrrrrrrr} x_1&-x_2 & &-x_4 & & & &+x_8 & =0 \\ & x_2 &-x_3 & +x_4 & & -x_6 & & & =0 \\ & & x_3 & +x_4 & & & -x_7 &-x_8& =0 \\ & & & 3\,x_4 &+x_5 & -x_6 & -2\,x_7 & -x_8 & =0 \\ & & & & x_5 & -x_6 & +x_7 & -x_8 & =0 \end{array} \right. $$ $$ \Rightarrow \mathfrak X_{3,1} =\left[1,1,0,0,1,1,0,0 \right]^{\top}\ ;\mathfrak X_{3,2} =\left[ 0,-1,0,1,-1,0,1,0 \right]^{\top};\ \mathfrak X_{3,3} =\left[0,1,1,0,1,0,0,1 \right]^{\top} \ . $$ $$ \lambda_4=-1 \ \Rightarrow \quad \left\{ \begin{array}{l} \mathfrak X_{4,1} =\left[-1,1,0,0,-1,1,0,0 \right]^{\top}\\ \mathfrak X_{4,2} =\left[ 0,1,-1,0,-1,0,0,1 \right]^{\top} \\ \mathfrak X_{4,3} =\left[0,1,0,-1,-1,0,1,0 \right]^{\top} \end{array} \right\}\, . $$ Применяем к каждой из них алгоритм ортогонализации Грама-Шмидта: $$\mathfrak Y_{3,1}=\mathfrak X_{3,1}=\left[1,1,0,0,1,1,0,0 \right]^{\top}; $$ $$ \mathfrak Y_{3,2}=\mathfrak X_{3,2}+{\color{RubineRed} \alpha } \mathfrak Y_{3,1}, \quad \langle \mathfrak Y_{3,2},\mathfrak Y_{3,1} \rangle =0 \quad \Rightarrow \ {\color{RubineRed} \alpha }=-\frac{\langle \mathfrak X_{3,2},\mathfrak Y_{3,1} \rangle}{\langle \mathfrak Y_{3,1},\mathfrak Y_{3,1} \rangle }=\frac{1}{2} \quad \Rightarrow $$ $$ \Rightarrow \mathfrak Y_{3,2}=\left[\frac{1}{2},-\frac{1}{2},0,1,-\frac{1}{2},\frac{1}{2},1,0 \right]^{\top} ; $$ $$ \mathfrak Y_{3,3}=\mathfrak X_{3,3}+{\color{RubineRed} \beta } \mathfrak Y_{3,1}+{\color{RubineRed} \gamma } \mathfrak Y_{3,2}, \quad \langle \mathfrak Y_{3,3},\mathfrak Y_{3,1} \rangle =0, \langle \mathfrak Y_{3,3},\mathfrak Y_{3,2} \rangle =0 \quad \Rightarrow \ $$ $$ {\color{RubineRed} \beta } =-\frac{\langle \mathfrak X_{3,3},\mathfrak Y_{3,1} \rangle}{\langle \mathfrak Y_{3,1},\mathfrak Y_{3,1} \rangle}=-\frac{1}{2},\ {\color{RubineRed} \gamma } =-\frac{\langle \mathfrak X_{3,3},\mathfrak Y_{3,2} \rangle }{\langle \mathfrak Y_{3,2},\mathfrak Y_{3,2} \rangle }=\frac{1}{3} \quad \Rightarrow \ $$ $$ \Rightarrow \mathfrak Y_{3,3}=\left[-\frac{1}{3},\frac{1}{3},1,\frac{1}{3},\frac{1}{3},-\frac{1}{3},\frac{1}{3},1 \right]^{\top} \, . $$ $$ \mathfrak Y_{4,1}=\mathfrak X_{4,1}=\left[-1,1,0,0,-1,1,0,0 \right]^{\top}, \mathfrak Y_{4,2}=\left[\frac{1}{2},\frac{1}{2},-1,0,-\frac{1}{2},-\frac{1}{2},0,1 \right]^{\top}, $$ $$ \mathfrak Y_{4,3}=\left[\frac{1}{3},\frac{1}{3},\frac{1}{3},-1,-\frac{1}{3},-\frac{1}{3},1,-\frac{1}{3} \right]^{\top} \, . $$ После нормирования, составляем из этих векторов ортогональную матрицу: $$ P= \left(\begin{array}{rrrrrrrr} -\sqrt{2}/4 & \sqrt{2}/4 & 1/2 & \sqrt{3}/6 & -\sqrt{6}/12 & -1/2 & \sqrt{3}/6 & \sqrt{6}/12 \\ -\sqrt{2}/4 & -\sqrt{2}/4 & 1/2 & -\sqrt{3}/6 & \sqrt{6}/12 & 1/2 & \sqrt{3}/6 & \sqrt{6}/12 \\ -\sqrt{2}/4 & \sqrt{2}/4 & 0 & 0 & \sqrt{6}/4 & 0 & -\sqrt{3}/3 & \sqrt{6}/12 \\ -\sqrt{2}/4 & -\sqrt{2}/4 & 0 & \sqrt{3}/3 & \sqrt{6}/12 & 0 & 0 & -\sqrt{6}/4 \\ \sqrt{2}/4 & -\sqrt{2}/4 & 1/2 & -\sqrt{3}/6 & \sqrt{6}/12 & -1/2 & -\sqrt{3}/6 & -\sqrt{6}/12 \\ \sqrt{2}/4 & \sqrt{2}/4 & 1/2 & \sqrt{3}/6 & -\sqrt{6}/12 & 1/2 & -\sqrt{3}/6 & -\sqrt{6}/12 \\ \sqrt{2}/4 & -\sqrt{2}/4 & 0 & \sqrt{3}/3 & \sqrt{6}/12 & 0 & 0 & \sqrt{6}/4 \\ \sqrt{2}/4 & \sqrt{2}/4 & 0 & 0 & \sqrt{6}/4 & 0 & \sqrt{3}/3 & -\sqrt{6}/12 \end{array} \right) \, . $$ $$ P^{\top}AP= \left( \begin{array}{rrrrrrrr} 3&&&&&&& \\ &-3&&&&&& \\ &&1&&&&& \\ &&&1&&&& \\ &&&&1&&& \\ &&&&&-1&& \\ &&&&&&-1& \\ &&&&&&&-1 \end{array} \right) \, . $$

Квадратичная форма

Экстремальное свойство собственных чисел

?

Пусть уравнение $ X^{^{\top}}A X=1 $ задает эллипсоид в $ \mathbb R^3 $, т.е. квадратичная форма положительно определена. Построить посылочный ящик минимального объема (минимальный параллелепипед), содержащий данный эллипсоид.

Решение. Если уравнение эллипсоида приведено к каноническому виду $$ \frac{x_1^2}{a^2}+\frac{x_2^2}{b^2}+\frac{x_3^2}{c^2}=1, $$ то ответ геометрически очевиден: эллипсоид «шире всего» в направлении оси, соответствующей максимальному из трех чисел $ a,b,c $, и «уже всего» в направлении оси, соответствующей минимальному из этих чисел. То есть размер оптимального посылочного ящика — $ (2\,a, 2\,b, 2\,c) $. В случае, если уравнение $ X^{^{\top}}A X=1 $ не приведено к каноническому виду, его можно привести к нему с помощью ортогональной замены переменных. Такая замена оставляет инвариантными размеры эллипсоида, а результатом ее становится уравнение эллипсоида в каноническом виде $$ \lambda_1 y_1^2+\lambda_2 y_2^2+\lambda_3 y_3^2=1 \, . $$ Здесь $ \lambda_1,\lambda_2,\lambda_3 $ — собственные числа матрицы $ A $, они являются положительными ввиду предположения о положительной определенности этой матрицы. Соответствующие собственные векторы матрицы определяют главные оси эллипсоида1). Сравнивая два канонических вида уравнения эллипсоида, можем размеры посылочного ящика сформулировать в терминах собственных чисел матрицы: максимальный размер эллипсоид имеет равным $ 2/\sqrt{\min \{\lambda_1,\lambda_2,\lambda_3\}} $, а минимальный — равным $ 2/\sqrt{\max \{\lambda_1,\lambda_2,\lambda_3\}} $. Если эллипсоид нельзя поворачивать вокруг начала координат, то для того, чтобы поместить его в ящик размеров $ 2/\sqrt{\lambda_1}, 2/\sqrt{\lambda_2}, 2/\sqrt{\lambda_3} $ последний надо ориентировать в пространстве: рёбра должны быть параллельны собственным векторам матрицы $ A $.

Замеченное свойство собственных чисел симметричной матрицы распространяется и в многомерное пространство. Традиционно его формулируют в несколько ином виде — хотя и менее наглядном, но более ориентированном на приложения в задачах механики и статистики.

Задача. Найти условные экстремумы квадратичной формы $ F(X)=X^{^{\top}}A X $ на единичной сфере $$ \mathbb S= \{ X\in \mathbb R^n \mid x_1^2+\dots+ x_n^2=1 \}\, . $$

В курсе математического анализа показывается, что, во-первых, указанные экстремумы существуют2), и, во-вторых, могут быть найдены применением метода множителей Лагранжа.

Т

Теорема. Если $ \lambda_{\max} $ — максимальное, а $ \lambda_{\min} $ — минимальное собственные числа матрицы $ A $, то $$ \max_{X \in \mathbb S} X^{^{\top}}A X =\lambda_{\max}, \qquad \min_{X \in \mathbb S} X^{^{\top}}A X =\lambda_{\min} \, . $$ Указанные экстремумы квадратичная форма достигает на соответствующих собственных векторах матрицы $ A $ единичной длины.

Доказательство. Применяем метод множителей Лагранжа, т.е. составляем функцию $$L(X,\lambda) = F(X)- \lambda (X^{\top}X-1)$$ и ищем ее абсолютные экстремумы (как функции $ (n+1) $-го аргумента). На основании теоремы о стационарных точках полинома эти экстремумы должны достигаться на вещественных решениях системы уравнений $$ \left\{ \begin{array}{lll} {\partial L }\big/{\partial x_1 }=&2\left(a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n \right)-2 \lambda x_1 &=0, \\ \dots & & \dots \\ {\partial L }\big/{\partial x_n}=&2\left(a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x_n \right)-2 \lambda x_n &=0, \\ {\partial L }\big/{\partial \lambda }=&x_1^2+\dots +x_n^2-1 &= 0 \, . \end{array} \right. $$ Решаем эту систему. Первые $ n $ уравнений перепишем в матричном виде $$AX-\lambda X=\mathbb O \ \iff \ (A-\lambda \, E) X=\mathbb O \, . $$ Из последнего уравнения системы следует, что $ X \ne \mathbb O $. Следовательно, решениями системы будут исключительно только собственные векторы $ {\mathfrak X}_j $ матрицы $ A $, при $ \lambda $ равном соответствующему собственному числу $ \lambda_j $ этой матрицы. При $ X={\mathfrak X}_j $ и $ \lambda=\lambda_j $ получаем экстремальные значения функции $ F(X) $: $$F({\mathfrak X}_j)={\mathfrak X}_j^{^{\top}}A {\mathfrak X}_j = \lambda_j {\mathfrak X}_j^{^{\top}}{\mathfrak X}_j=\lambda_j \, . $$ Откуда и следует утверждение теоремы.

§

Еще один вариант экстремального свойства симметричной матрицы излагается ЗДЕСЬ.

Кососимметричная матрица

рассматривается ЗДЕСЬ.

Обратно симметричная матрица

определяется ЗДЕСЬ.

Задачи

ЗДЕСЬ.

Источники

[1]. Полиа Г., Сегё Г. Задачи и теоремы из анализа. Т.2. М.Наука. 1978, с.122

1)
В случае существования кратных собственных чисел эллипсоид становится эллипсоидом вращения, и соответствующие собственные векторы можно выбрать взаимно перпендикулярными бесконечным числом способов.
2)
Теорема Вейерштрасса.
algebra2/symmetric.txt · Последние изменения: 2020/08/01 00:15 — au