В настоящем разделе матрица $ A_{} $ считается квадратной порядка $ n_{} $.
Сначала оптимизируем вычисление степени матрицы.
Пример 1. Вычислить
$$ A^{100} \quad npu \quad A=\left( \begin{array}{rrrr} 1 &2 &1 &0 \\ 1 & 1 & 0 &-1 \\ -2& 0 & 1 & 2 \\ 0 & 2 & 1 & 1 \end{array} \right) \ . $$
Решение. Можно организовать вычисление $ A^{100} $ по алгоритму квадрирования-умножения, заимствованному из раздела "MОДУЛЯРНАЯ АРИФМЕТИКА": $$ A^{100}=\left( \left( \left( \left( \left( \left( A \right)^2 A \right)^2 \right)^2 \right)^2 A\right)^2 \right)^2 \ . $$ Имеем: $ \underline{100}_{_{10}}=\underline{1100100}_{_2} $ $$ \begin{array}{|c|c|c|c|c|} \hline j & 1 & 2 & 3 & 4 \\ \hline {\mathfrak b}_j & 1 & 1 & 0 & 0 \\ \hline & A & A^2 A & \left(A^3 \right)^2 & \left(A^6 \right)^2 \\ & \left( \begin{array}{rrrr} 1 &2 &1 &0 \\ 1 & 1 & 0 &-1 \\ -2& 0 & 1 & 2 \\ 0 & 2 & 1 & 1 \end{array} \right) & \left( \begin{array}{rrrr} 1 &6 & 3 &0 \\ 3& 1 & 0 &-3 \\ -6& 0 & 1 & 6 \\ 0 & 6 & 3 & 1 \end{array} \right) & \left( \begin{array}{rrrr} 1 & 12 & 6 &0 \\ 6 & 1 & 0 &-6 \\ -12& 0 & 1 & 12 \\ 0 & 12 & 6 & 1 \end{array} \right) & \left( \begin{array}{rrrr} 1 & 24 & 12 &0 \\ 12 & 1 & 0 &-12 \\ -24& 0 & 1 & 24 \\ 0 & 24 & 12 & 1 \end{array} \right) \\ \hline \end{array} $$ $$ \begin{array}{|c|c|c|} \hline 5 &6 &7 \\ \hline 1 &0 & 0 \\ \hline \left(A^{12} \right)^2 A & \left(A^{25} \right)^2& \left(A^{50} \right)^2 \\ \left( \begin{array}{rrrr} 1 & 50 & 25 &0 \\ 25 & 1 & 0 &-25 \\ -50& 0 & 1 & 50 \\ 0 & 50 & 25 & 1 \end{array} \right) & \left( \begin{array}{rrrr} 1 & 100 & 50 &0 \\ 50 & 1 & 0 &-50 \\ -100& 0 & 1 & 100 \\ 0 & 100 & 50 & 1 \end{array} \right) & \left( \begin{array}{rrrr} 1 & 200 & 100 &0 \\ 100 & 1 & 0 &-100 \\ -200& 0 & 1 & 200 \\ 0 & 200 & 100 & 1 \end{array} \right) \\ \hline \end{array} $$
♦
Рассмотрим далее произвольный полином $ g(x)=b_0x^m+b_1x^{m-1}+\dots+b_m \in \mathbb C[x] $. Вычисление его значения от матрицы $ A_{} $, т.е. $$ g(A)=b_0A^m +b_1A^{m-1}+\dots+b_m E \ , $$ где $ E_{} $ — единичная матрица того же порядка, что и $ A_{} $, может быть произведено с помощью схемы Хорнера — чтобы сэкономить на операции умножения матриц.
Пример 2. Вычислить $ g(A)_{} $ для
$$ g(x)= 3\,x^4-x^3+2\,x^2-4\,x-1 \quad u \quad A=\left( \begin{array}{rrr} 1 & -3 & 4 \\ 3& 1 &8 \\ -4 & -8 & 1 \end{array} \right) \ . $$ Решение. Схему Хорнера организуем по тому же принципу, что и для вычисления значения полинома в точке: $$ g(A)=(((3\,A-E)A+2\,E)A-4\,E)A-E \ . $$ $$ B_1 = 3A-E = \left( \begin{array}{rrr} 2 & -9 & 12 \\ 9& 2 & 24 \\ -12 & -24 & 2 \end{array} \right) ; \ $$ $$ B_2=B_1A+2E= \left( \begin{array}{rrr} -71 & -111 & -52 \\ -81& -215 & 76 \\ -92 & -4 & -236 \end{array} \right) ; \ $$ $$ B_3=B_2A-4E= \left( \begin{array}{rrr} -200 & 518 & -1224 \\ -1030& -584 & -1968 \\ 840 & 2160 & -640 \end{array} \right) ; \ $$ $$ g(A)=B_4=B_3A-E= \left( \begin{array}{rrr} 6249 & 10910 & 2120 \\ 5090& 18249 & -10760 \\ 9880 & 4760 & 19999 \end{array} \right) $$ ♦
Дальнейшие упрощения возможны в случае, когда $ \deg g \ge n $, т.е. когда степень полинома становится больше или равной порядка матрицы. Предположим, что мы в состоянии вычислить характеристический полином матрицы $ A_{} $: $$ f(x)=\det (A-x E) \, . $$
Теорема 1. Обозначим $ g_1(x) $ остаток от деления $ g_{}(x) $ на характеристический полином $ f(x)=\det (A - x E) $. Тогда
$$ g(A)= g_1(A) \ .$$
Доказательство. Действительно, указанное равенство последует из теоремы Гамильтона-Кэли при подстановке матрицы $ A_{} $ в формулу $$ g(x)\equiv f(x)q(x)+g_1(x) ,\ \deg g_1 < n $$ здесь $ q_{}(x) $ означает частное от деления $ g(x_{}) $ на $ f(x_{}) $. ♦
Эта теорема позволяет свести вычисление $ g({\mathbf A}) $ к случаю полинома степени меньшей порядка матрицы. Это соображение существенно упрощает поставленную задачу, но при этом возникает другая: как вычислить остаток от деления если делимое существенно превосходит делитель по степени? Посмотрим, как этот подход будет выглядеть для примера 1.
Пример 3. Вычислить
$$ A^{100} \quad npu \quad A=\left( \begin{array}{rrrr} 1 &2 &1 &0 \\ 1 & 1 & 0 &-1 \\ -2& 0 & 1 & 2 \\ 0 & 2 & 1 & 1 \end{array} \right) \ . $$
Решение. Здесь $$\det (A- x E) = x^4-4\,x^3+6\, x^2 - 4\, x +1 \ . $$ Деление полинома $ g(x)\equiv x^{100} $ на характеристический полином, организованное традиционным способом (т.е. "в столбик" ) дает в остатке полином $$ g_1(x)=161700\,x^3-480150\,x^2+475300\,x-156849 \ ; $$ при этом частное $ q_{}(x) $ является полиномом $ 96 $-й степени. Для вычислений обоих полиномов приходится использовать специализированный пакет компьютерной алгебры. Вычисление $ g_1(A) $ уже может быть произведено «вручную», например, с использованием схемы Хорнера. ♦
Заметим, что собственно частное от деления полинома $ g_{}(x) $ на характеристический полином не участвует в последующих вычислениях полинома от матрицы — для этого нужны только коэффициенты остатка. Можно ли изобрести обходной способ вычисления остатка, который не требует промежуточного вычисления частного? — Оказывается, можно.
Предположим, что мы в состоянии найти корни характеристического полинома $ f(x)=\det (A-x E) $, т.е. собственные числа матрицы $ A_{} $. Предположим сначала, что все эти корни $ \lambda_1,\dots,\lambda_n $ различны. Подставим их в тождество для определения частного и остатка: $$ g(x)\equiv f(x)q(x)+g_1(x) \, . $$ Поскольку $ f(\lambda_j)=0 $ при $ j\in \{1,\dots,n\} $, получаем равенства $$ \{g(\lambda_j) = g_1(\lambda_j)\}_{j=1}^n \, . $$ Полином $ g_1(x) $ имеет степень меньшую $ n_{} $, а его значения совпадают со значениями полинома $ g(x) $ в $ n_{} $ точках. Такой полином определяется однозначно — как интерполяционный полином, построенный по таблице значений $$ \begin{array}{c|ccccc} x & \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \hline y & g(\lambda_1) & g(\lambda_2) &\dots & g(\lambda_n) \end{array} $$ Для его вычислений можно использовать любой из методов, изложенных в разделе "ИНТЕРПОЛЯЦИЯ". Предпочтение отдается методу Лагранжа: $$ g_1(x) \equiv \sum_{k=1}^n \frac{g(\lambda_k)}{f_k(\lambda_k)}f_k(x) = \sum_{k=1}^n \frac{g(\lambda_k)}{f'(\lambda_k)}f_k(x) $$ где $ f_{k}(x) $ означает частное от деления характеристического полинома на его линейный множитель: $$ f_k(x)\equiv \frac{f(x)}{x-\lambda_k} \equiv (x-\lambda_1)\times \dots \times (x-\lambda_{k-1}) (x-\lambda_{k+1})\times \dots \times (x-\lambda_{n}) \, . $$
Теорема 2. Если все собственные числа $ \lambda_{1},\dots,\lambda_n $ матрицы $ A_{} $ различны, то
$$ g(A)= \sum_{k=1}^n \frac{g(\lambda_k)}{f_k(\lambda_k)}f_k(A) = \sum_{k=1}^n \frac{g(\lambda_k)}{f'(\lambda_k)}f_k(A) $$ где $ f_k(x) $ означает частное от деления $ f_{}(x) $ на $ x- \lambda_k $.
Каждое из суммируемых выражений в формуле можно представить в виде двух сомножителей: один из них зависит от полинома $ g_{}(x) $, а второй — не зависит. Таким образом, при изменении полинома происходит лишь пересчет значений $ g(\lambda_1),\dots, g(\lambda_n) $, а их матричные сомножители не меняются. Структура этих последних уже была нами установлена в пункте ☞ СОБСТВЕННЫЙ ВЕКТОР: каждая матрица $ f_k(A) $ — ранга $ 1 $, т.е. имеет свои столбцы пропорциональными (и равными собственным векторам, принадлежащим $ \lambda_{k} $).
Пример 4. Выписать формулу $ g(A)_{} $ для произвольного $ g(x)\in \mathbb C[x] $ и
$$ A=\left( \begin{array}{rrr} 9 & 22 & -6 \\ -1 &-4 & 1 \\ 8 & 16 & -5 \end{array} \right) \ . $$
Решение. $ \det (A-x E)=-(x-3) (x+2)(x+1) $. Пренебрегая знаком – , имеем: $$ \begin{matrix} f_1(x)=x^2+3x+2 & u & f_1(A)= \left( \begin{array}{rrr} 40 & 80 & -20 \\ 0 &0 & 0 \\ 40 & 80 & -20 \end{array} \right) \ , f_1(3)=20 ; \\ f_2(x)=x^2-2x-3 & u & f_2(A)= \left( \begin{array}{rrr} -10 & -30 & 10 \\ 5 &15 & -5 \\ 0 & 0 & 0 \end{array} \right) \ , f_2(-2)=5 ; \\ f_3(x)=x^2-x-6 & u & f_3(A)= \left( \begin{array}{rrr} -4 & -8 & 4 \\ 4 & 8 & -4 \\ 8 & 16 & -8 \end{array} \right), f_3(-1)=-4 \ . \end{matrix} $$ $$ g(A)=g(3) \left( \begin{array}{rrr} 2 & 4 & -1 \\ 0 &0 & 0 \\ 2 & 4 & -1 \end{array} \right) + g(-2) \left( \begin{array}{rrr} -2 & -6 & 2 \\ 1 &3 & -1 \\ 0 & 0 & 0 \end{array} \right) + g(-1) \left( \begin{array}{rrr} 1 & 2 & -1 \\ -1 & -2 & 1 \\ -2 & -4 & 2 \end{array} \right) \ . $$ ♦
В случае, когда характеристический полином матрицы $ A_{} $ имеет кратные корни, для вычисления полинома $ g_1(x) $ из теоремы $ 1 $ приходится привлекать обобщение понятия классического интерполяционного полинома в виде интерполяционного полинома Эрмита. Действительно, полином $ g_1(x) $ определялся в теореме $ 1 $ как остаток от деления $ g_{}(x) $ на характеристический полином $ f(x)=\det (A- xE) $: $$ g(x)\equiv f(x)q(x)+g_1(x) ; $$ При этом $ \deg g_1 < n $, и, следовательно, полином $ g_1(x) $ вполне определялся произвольным набором $ n_{} $ своих значений — мы брали их равными $ g(\lambda_1),\dots,g(\lambda_n) $ в случае, когда все корни $ f_{}(x) $ были различными (простыми). Если же теперь среди корней имеются кратные и разложение характеристического полинома на линейные множители имеет вид $$ f(x)\equiv (-1)^n(x - \lambda_1)^{{\mathfrak m}_1} \times \dots \times (x - \lambda_{{\mathfrak r}})^{ {\mathfrak m}_{{\mathfrak r}}} \quad ; \quad {\mathfrak m}_1+\dots+{\mathfrak m}_{{\mathfrak r}}=n, \ \lambda_k \ne \lambda_{\ell} \ npu \ k \ne \ell, \exists {\mathfrak m}_j > 1, $$ то для нахождения полинома $ g_1(x) $ не хватает значений $ g(\lambda_1),\dots, g(\lambda_{{\mathfrak r}}) $. Для получения дополнительных условий, можно продифференцировать тождество $ g(x)\equiv f(x)q(x)+g_1(x) $ по $ x_{} $ и подставить в получившееся значения всех кратных корней полинома $ f_{}(x) $: $$ g^{\prime}(\lambda_j) = f^{\prime}(\lambda_j) q(\lambda_j)+f(\lambda_j) q^{\prime}(\lambda_j)+g_1(\lambda_j) \ . $$ Поскольку для любого кратного корня $ \lambda_{j} $ будет выполнено условие (см. ☞ ЗДЕСЬ ): $ f^{\prime}(\lambda_j)=0 $, то результатом подстановки будет равенство $ g^{\prime}(\lambda_j)=g_1^{\prime}(\lambda_j) $. Получаем дополнительные условия для определения полинома $ g_{1}(x) $. Итак, для нахождения полинома $ g_1(x) $ нам следует дополнительно к значениям $ g_{}(x) $ на всех корнях характеристического полинома (т.е. на собственных числах) матрицы $ A_{} $ вычислить еще и значения производной этой функции на всех кратных корнях. Может, однако, так случиться, что и этих дополнительных условий будет недостаточно для нахождения полинома $ g_1(x) $. Тогда следует продолжить процесс вычисления производных — для тех значений $ \lambda_{j} $, кратность которых $ {\mathfrak m}_j $ больше $ 2_{} $. Окончательно, для определения полинома $ g_1(x) $ мы имеем значения полинома $ g(x) $ и его производных $$ \begin{matrix} g(\lambda_1),\dots, g^{({\mathfrak m}_{_1}-1)}(\lambda_1), \\ g(\lambda_2),\dots, g^{({\mathfrak m}_{_2}-1)}(\lambda_1), \\ \dots, \\ g(\lambda_{\mathfrak r}),\dots, g^{({\mathfrak m}_{_{\mathfrak r}}-1)}(\lambda_{\mathfrak r})\ ; \end{matrix} $$ при этом количество значений в каждой строке равно (алгебраической) кратности соответствующего собственного числа. По этим значениям полином степени меньшей $ n_{} $ восстанавливается однозначно.
Заметим, что данный метод нечувствителен к геометрической кратности каждого из собственных чисел (т.е. к структуре жордановой нормальной формы матрицы $ A_{} $ вне ее главной диагонали); для его работы достаточно информации об алгебраической кратности.
Пример 5. Вычислить $ A^{100} $ для
$$ A= \left( \begin{array}{rrrr} 1 &2 &1 &0 \\ 1 & 1 & 0 &-1 \\ -2& 0 & 1 & 2 \\ 0 & 2 & 1 & 1 \end{array} \right) \ ; \ A= \left( \begin{array}{rrrr} 1 &0 &0 &0 \\ 1 & 2 & 0 &1 \\ 2& 3 & 1 & 2 \\ -1 & -1 & 0 & 0 \end{array} \right) \ ; A= \left( \begin{array}{rrrr} 1 &1 & 2 &-1 \\ 1 & -1 & -4 &2 \\ 0& 1 & 3 & -1 \\ 0 & 0 & 1 & 1 \end{array} \right) \ . $$
Решение. У всех трех матриц одинаковый характеристический полином: $ \det (A- x E) = (x-1)^4 $. Остаток от деления $ x^{100} $ на $ (x-1)^4 $ совпадает с отрезком ряда Тейлора функции $ x^{100} $ при разложении ее по степеням $ x-1 $, т.е. с $$ \begin{matrix} g_1(x)&=&1+100\,(x-1)+\frac{100\cdot99}{2}(x-1)^2+\frac{100\cdot 99 \cdot 98}{6}(x-1)^3= \\ &= & -156849+475300\,x-480150\,x^2+161700\,x^3 \ . \end{matrix} $$ Для всех трех матриц формула вычисления $ A^{100} $ одна и та же: $$ A^{100} = -156849\, E+475300\,A-480150\,A^2+161700\,A^3 \ . $$ Несмотря на то обстоятельство, что жордановы нормальные формы у этих матриц различны. ♦
В приведенном способе нахождения остатка от деления полинома $ g(x) $ на характеристический полином матрицы $ A_{} $ имеется один нюанс, требующий пояснений. Предположим, что элементы матрицы $ A_{} $ целочислены: $ \{a_{jk} \in \mathbb Z\}_{j,k=1}^n $. Тогда и характеристический полином $ f(x)=\det (A-x E) $ является полиномом с целочисленными коэффициентами $ f(x) \in \mathbb Z[x] $. Поскольку старший коэффициент $ f_{}(x) $ равен $ 1_{} $ по абсолютной величине, то и остаток от деления $ g_{} (x) $ на $ f_{}(x) $ будет иметь только целые коэффициенты (см. ☞ ЗДЕСЬ ): $ g_1(x) \in \mathbb Z[x] $. Между тем, вычисление этого полинома через посредство корней характеристического полинома, в общем случае, приводит к иррациональным выражениям: корни полинома, как правило, не выражаются в радикалах через его коэффициенты.
Пример 6. Вычислить $ g(A) $ для
$$ g(x)= x^{10}-6\,x^8+11\,x^7-x^3+4\,x^2- 1 $$ и $$ A= \left( \begin{array}{rrrrr} 6 &1 &5 &2 & -1 \\ -5 & -1 & -4 & -2 & 1 \\ -5 & -1 & -5 & -1 & 1 \\ -5 & -1 & -5 & -2 & 2 \\ -5 & 0 & -7 & -2 & 2 \end{array} \right) \, . $$
Решение. Характеристический полином $ f(x)= \det (A-x E)=-(x^5-4\,x-2) $ имеет корни, не выражающиеся в радикалах. Попробуем применить теорему 2 для приближенных значений корней: $$ \lambda_1 \approx -1.243596,\ \lambda_2 \approx -0.508499,\ \lambda_3 \approx 1.518512,\ \lambda_{4,5} \approx 0.116792 \pm {\mathbf i}\, 1.438448,\, . $$ Для нахождения частных от деления $ f_{}(x) $ на линейные множители $ (x-\lambda_j) $ воспользуемся следующим приемом. Частное от деления произвольного полинома $$ f(x)=a_0x^5+a_1x^4+a_2x^3+a_3x^2+a_4x+a_5 $$ на линейный полином $ x - \lambda $ находится по формуле $$ q(x,\lambda)=a_0x^4+(a_0\lambda + a_1)x^3+(a_0\lambda^2+a_1\lambda+a_2)x^2+(a_0\lambda^3+a_1\lambda^2+a_2\lambda+a_3)x+ $$ $$ +(a_0\lambda^4+a_1\lambda^3+a_2\lambda^2+a_3 \lambda+a_4) \, , $$ которая является развернутым вариантом схемы Хорнера. Подставляя сюда значения коэффициентов характеристического полинома $ f_{}(x) $ и приближенные значения его корней, получаем приближения полиномов $ f_j(x) $: $$ \begin{array}{ccl} f_1(x) &\approx & -x^4+1.243596\,x^3-1.546532\,x^2+1.923266\,x+1.608239 \, , \\ f_2(x) & \approx &-x^4+0.508499\,x^3-0.258572\,x^2+0.131483\,x+3.933141\, , \\ f_3(x) & \approx & \dots \\ f_{4,5}(x) & \approx & -x^4+(-0.116792\mp 1.438448\, \mathbf i)\,x^3+(2.055491\mp 0.335998\, \mathbf i)\,x^2+ \dots \end{array} $$ Вычисляем значения этих полиномов на матрице $ A_{} $: $$ f_1(A) \approx \left( \begin{array}{rrrrr} 1.844873 & 0.503518 & 3.247794 & -1.280266 & 0.201656 \\ 0.383692& 0.104720 & 0.675468 & -0.266266 & 0.041940 \\ -4.616308& -1.259922 & -8.126748 & 3.203527 &-0.504592 \\ 1.601674 & 0.437142 & 2.819656 &-1.111496 & 0.175073 \\ -6.130986 & -1.673321 & -10.793252 & 4.254651 & -0.670156 \end{array} \right) $$ $$ f_2(A) \approx \left( \begin{array}{rrrrr} -6.028030 & -5.334374 & -3.876435 & 0.470253 & 0.893870 \\ 9.342582 & 8.267515 & 6.007919& -0.728825 & -1.385371\\ 4.342582 & 3.842873 & 2.792577 & -0.338769 & -0.643943\\ 6.885079 & 6.092801 & 4.427577 & -0.537112 & -1.020959\\ 5.592221 & 4.948714 & 3.596180 &-0.436255 & -0.829246 \end{array} \right) $$ $$ f_3(A) \approx \dots $$ $$ f_{4,5}(A) \approx \left( \begin{array}{rrr} -4.833170\pm 17.111687 \, \mathbf i & -10.621186 \pm 0.712576 \, \mathbf i & \dots \\ 6.383099 \mp 14.587375 \, \mathbf i & 9.509036 \pm 0.668706 \, \mathbf i & \dots \\ 1.383099 \mp 14.587376 \, \mathbf i & 8.504395\mp 2.151023 \, \mathbf i & \dots \\ 0.799140 \mp 21.779614 \, \mathbf i & 12.443094\mp 3.925469 \, \mathbf i & \dots \\ 11.076597 \mp 23.459604 \, \mathbf i & 15.455549\pm 1.532904 \, \mathbf i & \dots \end{array} \right) \, . $$ Несмотря на кажущуюся хаотичность формирования элементов этих матриц, столбцы каждой из них пропорциональны (впрочем, равно как и строки). Составляем матрицу из теоремы $ 2 $: $$ \sum_{k=1}^5 \frac{g(\lambda_k)}{f_k(\lambda_k)}f_k(A) = \sum_{k=1}^5 \frac{g(\lambda_k)}{f_k(\lambda_k)} q(A,\lambda_k) \approx $$ $$ \approx \left( \begin{array}{rrrrr} -94.999999 & -173.999999 & -237.999999 & 143.999999 & 198.999999 \\ 159.999999 & 149.999999& 301.999999&-101.999999&-191.999999\\ 39.999999&156.999999&79.999999&-127.999999&-125.999999\\ 194.999999 &277.999999&229.999999&-239.999999&-140.999999\\ 404.999999&273.999999&435.999999&-67.999999&-278.999999 \end{array} \right) $$ (при уменьшении точности вычислений возможно появление ненулевых мнимых частей). Полученный ответ можно интерпретировать как приближение истинного, а именно, целочисленного: $$ \left( \begin{array}{rrrrr} -95&-174&-238&144&199\\ 160&150&302&-102&-192\\ 40&157&80&-128&-126\\ 195&278&230&-240&-141\\ 405&274&436&-68&-279 \end{array} \right) \, . $$ Возникает вопрос: можно ли было получить этот ответ, не прибегая к численным методам (и использованию мнимых чисел)? Где именно «заложена» принципиальная целочисленность ответа? Для ответа посмотрим на выражение $$ \sum_{k=1}^5 \frac{g(\lambda_k)}{f_k(\lambda_k)}f_k(A) = \sum_{k=1}^5 \frac{g(\lambda_k)}{f_k(\lambda_k)}f_k(A) = $$ $$ \sum_{k=1}^5 \frac{g(\lambda_k)}{f_k(\lambda_k)} \left(a_0A^4+(a_0\lambda_k + a_1)A^3 + (a_0\lambda_k^2+a_1\lambda_k+a_2)A^2 \dots \right)= $$ $$ = \left(a_0\sum_{k=1}^5 \frac{g(\lambda_k)}{f_k(\lambda_k)} \right)A^4 + \left( a_0 \sum_{k=1}^5 \frac{g(\lambda_k)\lambda_k}{f_k(\lambda_k)}+a_1 \sum_{k=1}^5 \frac{g(\lambda_k)}{f_k(\lambda_k)} \right) A^3+ \dots \, , $$ здесь $ a_0=(-1)^n,a_1, a_2,\dots $ обозначают коэффициенты полинома $ f_{}(x) $. Выражения в круглых скобках представляют собой симметрические рациональные функции от корней этого полинома. Согласно теореме Гаусса, эти функции допускают представление в виде рациональных функций от коэффициентов $ a_0,a_1, a_2,\dots $ (а, на самом деле, полиномов от этих коэффициентов). Так что ответ в задаче действительно должен быть целочисленным. Другое дело, что для его практического поиска мы привлекли численные методы поскольку явное представление симметрических рациональных функций через коэффициенты полинома — задача весьма сложная. ♦
Все применения ЖНФ основаны на формулах подобия матрицы и ее ЖНФ: $$C^{-1}{\mathbf A}C ={\mathbf A}_{_{\mathfrak J}} \quad \iff \quad {\mathbf A}= C{\mathbf A}_{_{\mathfrak J}}C^{-1} \ . $$
Оказывается, что любая мыслимая операция над матрицей $ {\mathbf A} $ может быть сведена к этой же операции над формой Жордана: $$g({\mathbf A})= Cg({\mathbf A}_{_{\mathfrak J}})C^{-1} \ .$$ В самом деле, имеем, например: $$ {\mathbf A}^2 =(C{\mathbf A}_{_{\mathfrak J}}C^{-1})^2=C{\mathbf A}_{_{\mathfrak J}}C^{-1}C{\mathbf A}_{_{\mathfrak J}}C^{-1}=C{\mathbf A}_{_{\mathfrak J}}^2C^{-1} \ . $$ По индукции можно показать справедливость равенства $$ {\mathbf A}^N=C{\mathbf A}_{_{\mathfrak J}}^NC^{-1} \quad npu \quad \forall N \in \mathbb N \ . $$ Далее, справедливость равенства $ {\mathbf A}^0=E=C{\mathbf A}_{_{\mathfrak J}}^0C^{-1} $ очевидна. Но тогда можно доказать и справедливость равенства $$ g({\mathbf A}) = Cg({\mathbf A}_{_{\mathfrak J}})C^{-1} $$ для любого полинома $ g(x)=b_0x^m+\dots+b_m \in \mathbb C[x] $. Отсюда — прямая дорога к аналитическим функциям от матрицы… Этот переход обсудим НИЖЕ, а пока остановимся и проведем анализ структуры полинома от ЖНФ.
Мы будем рассматривать матрицы и их ЖНФ над полем $ \mathbb C_{} $. Пусть характеристический полином матрицы $ \mathbf A_{} $ имеет следующее разложение на линейные множители над полем $ \mathbb C_{} $: $$ f(\lambda)= \det (\mathbf A - \lambda E) \equiv (-1)^n(\lambda - \lambda_1)^{{\mathfrak m}_1} \times \dots \times (\lambda - \lambda_{{\mathfrak r}})^{ {\mathfrak m}_{{\mathfrak r}}} \quad ; \quad {\mathfrak m}_1+\dots+{\mathfrak m}_{{\mathfrak r}}=n, \ \lambda_k \ne \lambda_{\ell} \ npu \ k \ne \ell. $$ ЖНФ матрицы $ \mathbf A_{} $ имеет вид блочно-диагональной матрицы $$ {\mathbf A}_{_{\mathfrak J}}=\left( \begin{array}{cccc} \mathbf A_1 & \mathbb O & \dots & \mathbb O \\ \mathbb O & \mathbf A_2 & \dots & \mathbb O \\ \vdots & & \ddots & \vdots\\ \mathbb O & \mathbb O & \dots & \mathbf A_{{\mathfrak r}} \end{array} \right) \quad , \quad \mbox{ здесь } \ \mathbf A_j - \mbox{ матрица порядка }\ {\mathfrak m}_j\times {\mathfrak m}_j \ . $$ В свою очередь, каждая из составляющих матриц $ \mathbf A_j $ имеет снова блочно-диагональный вид $$ \mathbf A_j= \left( \begin{array}{cccc} {\mathbf A}_{j1} & \mathbb O & \dots & \mathbb O \\ \mathbb O & {\mathbf A}_{j2} & \dots & \mathbb O \\ \vdots & & \ddots & \vdots\\ \mathbb O & \mathbb O & \dots & {\mathbf A}_{j \ell_j} \end{array} \right) $$ где на диагонали стоят клетки Жордана, т.е. матрицы вида $$ {\mathfrak J}_k (\lambda_j) = \left( \begin{array}{cccccc} \lambda_j & & & & & \\ 1 & \lambda_j & & & & \\ 0 & 1 & \lambda_j & & \mathbb O & \\ \vdots & & \ddots & \ddots& & \\ 0 & 0 & 0 & \dots & \lambda_j & \\ 0 & 0 & 0 & \dots & 1 & \lambda_j \end{array} \right)_{k \times k} \ . $$ Теперь наша задача — свести вычисление произвольного полинома от $ {\mathbf A}_{_{\mathfrak J}} $ к вычислению этого же полинома от клеток Жордана: $ g({\mathbf A}_{_{\mathfrak J}}) $ — к $ g({\mathfrak J}_k (\lambda_j)) $.
Теорема 3. Если матрица $ {\mathbf D} $ — блочно-диагональная, то и $ {\mathbf D}^N $ — блочно-диагональная:
$$ \left( \begin{array}{cccc} {\mathbf D}_1 & \mathbb O & \dots & \mathbb O \\ \mathbb O & {\mathbf D}_2 & \dots & \mathbb O \\ \vdots & & \ddots & \vdots \\ \mathbb O & \mathbb O & \dots & {\mathbf D}_r \end{array} \right)^N= \left( \begin{array}{cccc} {\mathbf D}_1^N & \mathbb O & \dots & \mathbb O \\ \mathbb O & {\mathbf D}_2^N & \dots & \mathbb O \\ & & \ddots & \\ \mathbb O & \mathbb O & \dots & {\mathbf D}_r^N \end{array} \right) \ . $$ Здесь $ {\mathbf D}_1, \dots, {\mathbf D}_r $ — квадратные матрицы1).
Теорема 4. Если матрица $ L_{} $ — нижнетреугольная, то и $ L^N $ — нижнетреугольная.
Теоремы $ 3 $ и $ 4 $ сводят вычисление степени матрицы $ {\mathbf A} $ к вычислению степени ее клеток Жордана $ {\mathfrak J}_k (\lambda_j) $.
Теорема 5. Имеет место равенство:
$$ \left( \begin{array}{rrrrrr} \lambda & & & & & \\ 1 & \lambda & &\mathbb O & & \\ 0& 1 & \lambda & & & \\ \vdots & & \ddots & \ddots & & \\ 0 & 0 & \dots & 1 & \lambda & \\ 0 & 0 & \dots & 0 & 1 &\lambda \end{array} \right)_{k\times k}^N= $$ $$ = \left( \begin{array}{ccrlcc} \lambda^N & & & & & \\ C_N^1 \lambda^{N-1} & \lambda^N & &\mathbb O & & \\ C_N^2 \lambda^{N-2} & C_N^1 \lambda^{N-1} & \lambda^N & & & \\ \dots & & \ddots & \ \ \ddots & & \\ C_N^{k-2} \lambda^{N-k} & \dots & & C_N^1 \lambda^{N-1} &\lambda^N & \\ C_N^{k-1} \lambda^{N-k+1} & \dots & & C_N^2 \lambda^{N-2} & C_N^1 \lambda^{N-1} &\lambda^N \end{array} \right) $$ (считаем здесь элементы с отрицательными показателями $ \lambda $ равными нулю). Более корректная запись матрицы в правой части возможна с помощью матрицы $$H_j = \begin{array}{rl} \begin{array}{c} {\scriptstyle 0 \to} \\ {\scriptstyle 1 \to} \\ \vdots \\ {\scriptstyle j \to} \\ \vdots \\ {\scriptstyle k-1 \to} \end{array} \left(\begin{array}{llllll} 0 & & & & &\\ 0 & & & \mathbb O & &\\ \vdots & & & & &\\ 1 & & & & \\ \vdots & \ddots & & &\\ 0 & & 1 & \dots & 0 & 0 \end{array} \right) \end{array} =\left[ \begin{array}{ll} \mathbb O_{j\times (k-j)} & \mathbb O_{j\times j} \\ E_{(k-j) \times (k-j)} & \mathbb O_{(k-j)\times j} \end{array} \right]_{k\times k} $$ (единицами заполнена $ j_{} $-я диагональ, считая от нулевой — главной): $$ \left[{\mathfrak J}_k (\lambda) \right]^N = $$ $$ =\lambda^N E + C_N^1 \lambda^{N-1} H_1 + C_N^2 \lambda^{N-2} H_2 + \dots +\left\{ \begin{array}{ccc} C_N^N H_N & npu & N<k, \\ C_N^{k-1}\lambda^{N-k+1} H_{k-1} & npu & N \ge k. \end{array} \right. $$
Пример. Вычислить
$$ A^{100} \quad \mbox{ при } \ A=\left( \begin{array}{rrrr} 1 &2 &1 &0 \\ 1 & 1 & 0 &-1 \\ -2& 0 & 1 & 2 \\ 0 & 2 & 1 & 1 \end{array} \right) \ . $$
Решение. Найдем ЖНФ для матрицы $ A $ и матрицу $ C_{} $. $$\det (A- \lambda E) = (\lambda-1)^4 \ . $$ Ищем корневые векторы, принадлежащие $ \lambda_1=1 $: $$ B=A- E= \left( \begin{array}{rrrr} 0 & 2 & 1 & 0 \\ 1 & 0 & 0 &-1 \\ -2 & 0 & 0 & 2 \\ 0 & 2 & 1 & 0 \end{array} \right) \quad \rightarrow \quad \left( \begin{array}{rrrr} 0 &2 &1 &0 \\ 1 & 0 & 0 &-1 \\ 0& 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) $$ Имеем: $ \mathbb Q_1=\mathcal L \left( \left[ 0 , -1 , 2 , 0 \right]^{^{\top}}, \left[ 1 , 0 , 0 , 1 \right]^{^{\top}} \right) $; следовательно геометрическая кратность собственного числа не равна его алгебраической кратности и матрица $ A $ недиагонализуема. $$ B^2=\mathbb O_{4\times 4} \quad \Longrightarrow \quad \mathbb Q_2= \mathcal L \left( \left[ 0 , -1 , 2 , 0 \right]^{^{\top}}, \left[ 1 , 0 , 0 , 1 \right]^{^{\top}},\left[ 1 , 0 , 0 , 0 \right]^{^{\top}}, \left[ 0 , 1 , 0 , 0 \right]^{^{\top}} \right) \ . $$ В ЖНФ имеются $ 2_{} $ клетки $ 2 \times 2 $. Для построения канонического базиса берем векторы из относительного базиса $ \mathbb Q_2 $ над $ \mathbb Q_1 $ и домножаем их на $ B $ (заполняем башни сверху вниз). Получаем $$ C= \left( \begin{array}{rrrr} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{array} \right) \quad , A_{_\mathfrak J}= \left( \begin{array}{rrrr} 1 & & & \\ 1 & 1 & & \\ & & 1 & \\ & & 1 & 1 \end{array} \right) $$ Теперь воспользуемся формулой $ A^{100}=C A_{_{\mathfrak J}}^{100} C^{-1} $ и теоремами 1-3: $$ A^{100}=C \left( \begin{array}{rrrr} 1 & & & \\ 1 & 1 & & \\ & & 1 & \\ & & 1 & 1 \end{array} \right)^{100}C^{-1}= $$ $$= \left( \begin{array}{rrrr} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{array} \right) \left( \begin{array}{llll} 1 & & & \\ 100 & 1 & & \\ & & 1 & \\ & & 100 & 1 \end{array} \right) \left( \begin{array}{rrrr} 1 & 0 & 0 & -1 \\ 0 & 0 & -1/2 & 0 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{array} \right) = $$ $$ = \left( {\begin{array}{rrrr} 1 & 200 & 100 & 0 \\ 100 & 1 & 0 & -100 \\ -200 & 0 & 1 & 200 \\ 0 & 200 & 100 & 1 \end{array}} \right) \ . $$ ♦
Настоящий пункт тесно связан с разделом ЛИНЕЙНОЕ РАЗНОСТНОЕ УРАВНЕНИЕ.
Пусть рекуррентная последовательность задается уравнением $$ x_{n+K}=a_1 x_{n+K-1}+ \dots+ a_n x_K $$ и начальными данными $ x_0,x_1,\dots,x_{n-1} $.
Введем в рассмотрение столбцы, состоящие из $ n_{} $ последовательных элементов этой последовательности, обозначив $$ X_0=\left( \begin{array}{l} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{array} \right),\ X_1=\left( \begin{array}{l} x_1 \\ x_2 \\ \vdots \\ x_{n} \end{array} \right),\ X_2=\left( \begin{array}{l} x_2 \\ x_3 \\ \vdots \\ x_{n+1} \end{array} \right),\ \dots, X_K=\left( \begin{array}{l} x_K \\ x_{K+1} \\ \vdots \\ x_{K+n-1} \end{array} \right),\dots ; $$ а также следующую матрицу, известную как матрица Фробениуса: $$ {\mathfrak F}= \left( \begin{array}{lllllll} 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots& &&&\ddots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \\ a_n & a_{n-1} & a_{n-2} & & \dots & a_2 & a_1 \end{array} \right)_{n \times n} \ . $$ Используя правило умножения матриц, а также соотношение между элементами последовательности, получаем: $$ X_1={\mathfrak F}X_0,\ X_2={\mathfrak F}X_1,\dots, X_K={\mathfrak F}X_{K-1},\dots, $$ откуда имеем: $$ X_K={\mathfrak F}^KX_0 \quad npu \quad K\in \mathbb N \ . $$ Искомое выражение для $ x_{K} $ получится умножением первой строки матрицы $ {\mathfrak F}^K $ на столбец начальных данных $ X_{0} $. Таким образом, задача решения разностного уравнения сводится к задаче возведения в степень матрицы $ {\mathfrak F} $.
Для нахождения $ {\mathfrak F}^{K} $ воспользуемся результатами предыдущего пункта. Найдя жорданову нормальную форму (ЖНФ) $ {\mathfrak F}_{\mathfrak J} $ и соответствующую матрицу преобразования базиса $ C_{} $, получим $$ {\mathfrak F}_{\mathfrak J} =C^{-1} \mathfrak F C \Longrightarrow {\mathfrak F}^{K}=C {\mathfrak F}_{_{\mathfrak J}}^{K} C^{-1} \, . $$ Характеристический полином матрицы Фробениуса: $$\det ({\mathfrak F}- \lambda E)= (-1)^n(\lambda^n-a_1 \lambda^{n-1}-\dots-a_n) \ . $$ с точностью до знака совпадает с характеристическим полиномом последовательности. Обозначим его корни $ \lambda_1,\dots,\lambda_n $. Если они различны, то жорданова нормальная форма $ {\mathfrak F}_{_{\mathfrak J}} $ диагональна. Если же среди этих корней имеются кратные, то установление структуры ЖНФ потребует усилий; однако же можно заранее утверждать, что эта форма диагональной не будет.
Теорема 6. Если все корни характеристического полинома различны, то решение разностного уравнения получается в виде
$$ x_{K}= C_1\lambda_1^K + \dots+ C_n \lambda_n^K \ , $$ числа $ C_{1},\dots,C_n $ не зависят от $ K_{} $ и определяются с помощью начальных условий из системы линейных уравнений: $$ \left\{\begin{array}{rrrrcl} C_1 &+C_2 &+\dots &+ C_n &=& x_0 \\ \lambda_1 C_1 &+ \lambda_2C_2&+\dots & + \lambda_n C_n & = & x_1 \\ \lambda_1^2 C_1 &+ \lambda_2^2C_2&+\dots & + \lambda_n^2 C_n & = & x_2 \\ \dots &&&&& \dots \\ \lambda_1^{n-1}C_1 &+ \lambda_2^{n-1}C_2&+\dots & + \lambda_n^{n-1} C_n & = & x_{n-1}. \end{array} \right. $$
Доказательство теоремы и ее обобщение на случай наличия кратных корней характеристического полинома ☞ ЗДЕСЬ.
Задача. Выяснить как себя ведет $ A^N $ при $ N\to +\infty $.
Пример предыдущего пункта показывает, что существуют матрицы $ A_{} $, для которых некоторые элементы $ A^N $ неограниченно возрастают при $ N\to +\infty $.
Теорема 7. Если все собственные числа матрицы $ A_{} $ меньше $ 1 $ по абсолютной величине, т.е. $ \{|\lambda_j|<1\}_{j=1}^n $, то
$$ \lim_{N\to +\infty} A^N = \mathbb O_{n\times n} \, . $$ Если существует хотя бы одно собственное число $ \lambda_j $ такое, что $ |\lambda_j|>1 $, то существует хотя бы один элемент матрицы $ A^N $ неограниченно возрастающий при $ N\to +\infty $.
Теперь проведем анализ структуры матрицы $ g( A) $ с помощью жордановой нормальной формы. Способ вычисления матричной степени распространяется и на полином от матрицы: $$g({ A})= Cg({ A}_{_{\mathfrak J}})C^{-1}$$ и аналоги теорем $ 3 $ и $ 4 $ сводят вычисление $ g(A) $ к вычислению $ g(x_{}) $ от клеток Жордана. Поскольку $$g\left( {\mathfrak J}_k (\lambda) \right)= b_0\left[{\mathfrak J}_k (\lambda)\right]^m+b_1\left[{\mathfrak J}_k (\lambda)\right]^{m-1}+\dots+b_mE_{m\times m} $$ то на основании теоремы $ 5 $ получаем следующий результат
Теорема 8. Имеет место равенство
$$ g\left(\left[ \begin{array}{rrrrr} \lambda & & & & \\ 1 & \lambda & & \mathbb O & \\ 0& 1 & \lambda & & \\ \vdots & & \ddots & \ddots & \\ 0 & 0 & \dots & 1 &\lambda \end{array} \right]_{k\times k}\right)= \left[ \begin{array}{ccccc} g(\lambda) & & & & \\ g'(\lambda) & g(\lambda) & & \mathbb O & \\ \frac{g''(\lambda)}{2!}& g'(\lambda) & g(\lambda) & & \\ \vdots & & \ddots & \ddots & \\ \frac{g^{(k-1)}(\lambda)}{(k-1)!} & \frac{g^{(k-2)}(\lambda)}{(k-2)!} & \dots & g'(\lambda) & g(\lambda) \end{array} \right]= $$ $$ =g(\lambda)E+ g'(\lambda) H_1 + \frac{g''(\lambda)}{2!}H_2+\dots+ \frac{g^{(k-1)}(\lambda)}{(k-1)!} H_{k-1} \, . $$
Можно ли утверждать, что геометрическая кратность собственного числа $ g(\lambda_j) $ матрицы $ g(A) $ совпадает с геометрической кратностью собственного числа $ \lambda_j $ матрицы $ A $ (т.е. что порядки соответствующих клеток Жордана одинаковы)?
Нормой произвольной (не обязательно квадратной) матрицы $ A \in \mathbb C^{m\times n} $ называется неотрицательное число $ \| A \| $, удовлетворяющее условиям (аксиомам):
1. $ \| A \|=0 $ тогда и только тогда, когда $ A=\mathbb O_{m\times n} $;
2. для $ \forall \alpha\in \mathbb C $ справедливо $ \| \alpha A \|=|\alpha |\cdot \| A \| $;
3. для любых матриц $ A, B $ из $ \mathbb C^{m\times n} $ справедливо $ \| A + B \| \le \| A \|+\| B \| $;
Три эти аксиомы являются универсальными аксиомами нормы в произвольном линейном векторном пространстве. Для матриц можно ввести дополнительную операцию — операцию умножения. В этом случае норму подчиняют еще одной аксиоме.
4. для любых матриц $ A_{} $ и $ B_{} $, допускающих умножение $ A \cdot B $, справедливо $ \| A \cdot B \| \le \| A \| \cdot \| B \| $.
Норму можно вводить разными способами.
Пример. Для матриц с комплексными элементами евклидова норма (или норма Фробениуса) вводится формулой:
$$\| A \| = \sqrt{\sum_{j,k} |a_{jk}|^2} \ ;$$ эту формулу для матриц с вещественными элементами можно переписать в виде $$ \| A \| = \sqrt{ \operatorname{Sp}_{}\, (A \cdot A^{^{\top}})} \, . $$ Выполнение для нее аксиом 1 и 2 очевидно. Справедливость 3 следует из неравенства треугольника: $ |a_{jk}+b_{jk}|^2\le |a_{jk}|^2 +|b_{jk}|^2 $, а 4 следует из неравенства Коши-Буняковского: $$|a_{j1}b_{1k}+\dots+ a_{jn}b_{nk}|^2 \le \left(|a_{j1}|^2+\dots+|a_{jn}|^2 \right) \left(|a_{1k}|^2+\dots+|a_{nk}|^2 \right) \, .$$ Эту норму можно рассматривать как обобщение понятия длины вектора в $ \mathbb R^{n} $: $ \| X_{n\times 1} \| = \sqrt{ x_1^2+\dots+x_n^2}=|X| $. Вообще, любая формула, задающая скалярное произведение в евклидовом пространстве матриц, порождает и норму матрицы: $ \| A \|= \sqrt{\langle A,A \rangle} $. Только что введенная норма соответствует стандартному скалярному произведению.
Теорема 9. Евклидова норма вещественной матрицы не меняется при умножении этой матрицы на произвольную ортогональную.
Доказательство ☞ ЗДЕСЬ.
Пример. $ \displaystyle \| A \| = \max_j \sum_k |a_{jk}| $. Тогда $ \| X_{n\times 1} \| =\displaystyle{ \max_{j=1,\dots,n} |x_j|} $.
Пример. $ \displaystyle \| A \| = \max_k \sum_j |a_{jk}| $. Тогда $ \| X_{n\times 1} \| =\displaystyle{ \sum_{j=1}^n |x_j|} $.
Введение понятия нормы позволяет упростить рассуждения о сходимости матричной последовательности $ \{ A_N \}_{N=1}^{\infty} $. В предыдущих пунктах эта сходимость понималась в смысле существования пределов у последовательностей элементов $ a_{jk}^{(N)} $ одновременно для всех индексов $ j_{} $ и $ k_{} $. Норма позволяет объединить исследование этих последовательностей на сходимость в изучение одной.
Теорема 10. Последовательность $ \{ A_N \}_{N=1}^{\infty} $ сходится при $ N \to \infty $ к матрице $ A_{} $ тогда и только тогда, когда $$\lim_{N\to \infty} \| A_N - A \|=0 \, .$$
Матричный ряд $$ \sum_{j=1}^{\infty} A_j = A_1 + \dots + A_N+ \dots $$ называется сходящимся если существует конечный предел последовательности $$\left\{ S_N = \sum_{j=1}^{N} A_j= A_1 + \dots + A_N \right\}_{N=1}^{\infty}$$ его частичных сумм. Тогда величина этого предела называется суммой матричного ряда: $$ S= \sum_{j=1}^{\infty} A_j = \lim_{N\to \infty} S_N \, .$$ Матричный ряд называется расходящимся если хотя бы для одной пары индексов $ j_{} $ и $ k_{} $ последовательность $ s_{jk}^{(N)} $ расходится. Матричный ряд называется абсолютно сходящимся если сходится числовой ряд его норм: $ \displaystyle \sum_{j=1}^{\infty} \| A_j \| $.
Теорема 11. Если матричный ряд сходится абсолютно, то он сходится и в обычном смысле.
Теорема 12 [признак сравнения]. Если ряд $ \displaystyle \sum_{j=1}^{\infty} A_j $ абсолютно сходится и $ \| A_j \|\ge \| B_j \| $ для $ \forall j\in \mathbb N $, то и ряд $ \displaystyle \sum_{j=1}^{\infty} B_j $ сходится абсолютно.
Рассмотрим теперь степенной ряд $$ \sum_{j=0}^{\infty}b_j z^j=b_0+b_1z+b_2z^2+\dots $$ переменную в котором предполагаем комплексной: $ z \in \mathbb C $. Пусть $ R $ — радиус сходимости этого ряда, т.е. ряд сходится при $ |z|<R $ и расходится при $ |z|>R $. Известно, что $$R=\overline{\lim_{n\to \infty}}\left| \frac{b_n}{b_{n+1}} \right|= \overline{\lim_{n\to \infty}} \frac{1}{\sqrt[n]{|b_{n}|}} \, .$$
Рассмотрим теперь соответствующий матричный степенной ряд $$ \sum_{j=0}^{\infty} b_j Z^j =b_0E+b_1 Z +b_2 Z^2+\dots $$ при $ Z \in \mathbb C^{n\times n} $.
Теорема 13. Матричный степенной ряд сходится абсолютно для любой матрицы $ Z $ такой, что $ \| Z\|<R $.
Доказательство. Имеем $$ \sum_{j=0}^{\infty}\| b_j Z^j \| \le \sum_{j=0}^{\infty}| b_j|\, \| Z \|^j \, .$$ Числовой ряд в правой части сходится при $ \| Z\|<R $. На основании теорем $ 11 $ и $ 12 $ сходится и ряд $ \sum_{j=0}^{\infty} b_j Z^j $.
Пример. Ряд
$$\sum_{j=0}^{\infty}z^j=1+z+z^2+\dots+z^j+\dots $$ сходится при $ |z|<1 $ к функции $ 1/(1-z) $. На основании теоремы $ 13 $ можно утверждать, что матричный ряд $$ \sum_{j=0}^{\infty}Z^j=E+Z+Z^2+\dots+Z^j+\dots $$ сходится абсолютно для любой матрицы $ Z $ такой, что $ \| Z\|<1 $.
Если ряд $ \sum_{j=0}^{\infty}b_j z^j $ сходится при $ \forall z \in \mathbb C $, то и ряд $ \sum_{j=0}^{\infty}b_j Z^j $ сходится при любой матрице $ Z\in \mathbb C^{n \times n} $.
Сумма сходящегося степенного ряда $ \sum_{j=0}^{\infty}b_j Z^j $ будет функцией переменной матрицы $ Z $. Такая функция называется аналитической функцией матрицы.
Если обозначить сумму ряда $ \sum_{j=0}^{\infty}Z^j $ через $ F(Z) $, то легко проверяется свойство: $ F(Z)(E-Z)=E $. Таким образом, ряд сходится к матрице $ (E-Z)^{-1} $ при $ \|Z \|<1 $.
Теорема 14. Если матрицы $ A $ и $ B $ подобны, а $ F $ — аналитическая функция, определенная для $ A $, то тогда она будет определена и для $ B $, и матрицы $ F(A) $ и $ F(B) $ также подобны:
$$ A \doteq B \quad \Rightarrow \quad F(A) \doteq F(B) \, . $$
Доказательство. По условию $ B=C^{-1} AC $ при некоторой неособенной матрице $ C\in \mathbb C^{n\times n} $. Рассмотрим $ N $-ю частичную сумму ряда: $$ F_N(Z)= \sum_{j=0}^{N} a_j Z^j\, . $$ В ☝ ПУНКТЕ было доказано, что $$F_N(B)=C^{-1}F_N(A) C \, .$$ Переходя к пределу, получаем $$\lim_{N \rightarrow \infty} F_N(B)= C^{-1}\left( \lim_{N \rightarrow \infty} F_N(A) \right) C =C^{-1}F(A)C \, .$$ Таким образом, функция $ F $ определена и для $ B $ и $ F(B)=C^{-1}F(A)C $. ♦
Теорема 15. Ряд $ \sum_{j=0}^{\infty} b_j Z^j $ сходится для любой матрицы $ A $ чей спектр лежит внутри круга сходимости:
$$ \{|\lambda_j|<R\}_{j=1}^n $$ и расходится если хотя бы одно число оказывается за пределами этого круга: $$ \exists j \in \{1,\dots,n\} \quad \mbox{ такое, что } \quad |\lambda_j|>R \, . $$
Доказательство ☞ ЗДЕСЬ.
Если $ \{|\lambda_j|<R\}_{j=1}^n $, то спектр матрицы $ F(A) $ равен $ \{ F(\lambda_j) \}_{j=1}^n $.
Пример. Вычислить сумму ряда
$$\sum_{j=1}^{\infty}\frac{1}{j} A^j \quad npu \quad A=\left( \begin{array}{rrr} -3/2& 0& -4 \\ -7& 1/2 & -14\\ 1 & 0 & 5/2 \end{array} \right) \, .$$
Решение. Соответствующий степенной ряд сходится при $ |z|<1 $ и имеет суммой $ (- \ln (1-z)) $. $$ \det (A-\lambda E)=-(\lambda-1/2)^3 \, . $$ По теореме $ 15 $ матричный ряд сходится. Для применения формулы ?? нам потребуется ЖНФ матрицы $ A $. Опуская промежуточные вычисления, получим $$ A= \underbrace{ \left( \begin{array}{rrr} -2& -1& -2 \\ 0& 0 & -7\\ 1 & 1 & 1 \end{array} \right)}_{C} \underbrace{ \left( \begin{array}{rrr} 1/2& 0& 0 \\ 0& 1/2 & 0\\ 0 & 1 & 1/2 \end{array} \right) }_{A_{_{\mathfrak J}}} \underbrace{ \left( \begin{array}{rrr} -1& 1/7& -1 \\ 1 & 0 & 2 \\ 0 & -1/7 & 0 \end{array} \right) }_{C^{-1}} $$ $$ - \ln (E-A)= \left( \begin{array}{rrr} -2& -1& -2 \\ 0& 0 & -7\\ 1 & 1 & 1 \end{array} \right) \left( \begin{array}{rrr} \ln 2& 0& 0 \\ 0 & \ln 2 & 0\\ 0 & 2 & \ln 2 \end{array} \right) \left( \begin{array}{rrr} -1& 1/7& -1 \\ 1 & 0 & 2 \\ 0 & -1/7 & 0 \end{array} \right) $$
Ответ. $$ \left( \begin{array}{ccc} \ln 2-4 & 0 & -8 \\ -14 & \ln 2 & -28 \\ 2 & 0 & \ln 2+4 \end{array} \right) \, . $$
Формула $$ F(Z)=CF(Z_{_{\mathfrak J}})C^{-1} \quad npu \quad F\left( {\mathfrak J}_k (\lambda) \right)=\left[ \begin{array}{ccccc} F(\lambda) & & & & \\ F'(\lambda) & F(\lambda) & & \mathbb O & \\ \frac{F''(\lambda)}{2!}& F'(\lambda) & F(\lambda) & & \\ \vdots & & \ddots & \ddots & \\ \frac{F^{(k-1)}(\lambda)}{(k-1)!} & \frac{F^{(k-2)}(\lambda)}{(k-2)!} & \dots & F'(\lambda) & F(\lambda) \end{array} \right] $$ может быть использована и для доопределения функции от матрицы для случая тех матриц, которые не удовлетворяют условиям теорем $ 13 $ или $ 15 $. Действительно, если ряд $ \sum_{j=1}^{\infty} z^j/j $ представляет функцию $ (-\ln (1-z)) $ только при $ |z|<1 $, то сама функция существует и для $ z \le -1 $. Если договориться положить последнюю формулу в качестве определения функции от матрицы $ Z $, то эта формула будет вычислять $ F(Z) $ для всех тех матриц, на спектрах которых определены значения функции $ F(z) $ и ее производных до порядков, соответствующих порядкам клеток Жордана.
С использованием этой договоренности возможно и дальнейшее упрощение вычислений $ F(A) $, основанное на теореме Гамильтона-Кэли. В самом деле, поскольку степени матрицы $ A^{n}, A^{n+1},\dots $ линейно выражаются через степени $$ E=A^0, A, A^{2},\dots, A^{n-1} , $$ то бесконечный ряд $ \sum_{j=0}^{\infty} b_j A^j $ может быть свернут в матричный полином степени не выше $ n-1 $. Нахождение этого полинома производится обобщением теоремы $ 2 $.
Теорема 16. Если $ \{\lambda_1,\dots,\lambda_n\} \subset \mathbb C $ — различные корни аналитической функции $ \Phi(z) $, лежащие внутри ее круга сходимости, то существует единственное представление функции в виде
$$ \Phi(z) \equiv (z-\lambda_1)\times \dots \times (z-\lambda_n)Q(z) \ , $$ где $ Q(z) $ — аналитическая функция с тем же радиусом сходимости.
Теорема 17. Если все собственные числа $ \lambda_1,\dots,\lambda_n $ матрицы $ A $ различны, то
$$F(A)=g(A) \, ,$$ где $ g(x) $ — интерполяционный полином, построенный по таблице $$ \begin{array}{c|ccc} x & \lambda_1 & \dots & \lambda_n \\ \hline y & F(\lambda_1) & \dots & F(\lambda_n) \end{array} \, . $$
Доказательство. Рассмотрим функцию $ \Phi(z)= F(z)-g(z) $. Поскольку $ g(\lambda_j)=F(\lambda_j) $, то $ \Phi(\lambda_j)=0 $ для всех $ j\in \{1,\dots,n\} $. Тогда для $ \Phi(z) $ будет выполнено тождество из теоремы $ 16 $. Подставим матрицу $ A $ в это тождество: $$\Phi(A) \equiv \underbrace{(A-\lambda_1E)\times \dots \times (A-\lambda_nE)}_{=\mathbb O}Q(A) $$ Отсюда и следует равенство $ F(A)=g(A) $.
Рассмотрим (не обязательно квадратную) матрицу, элементами которой являются функции, зависящие от переменной $ t\in ]a,b[ \subset \mathbb R $: $ A(t)=\left[a_{jk}(t) \right]_{j,k} $.
Производной матрицы $ A(t) $ по $ t $ будем называть матрицу $$\frac{ d\, A(t)}{ d\, t}= A^{\prime} (t)= \left[\frac{ d\, a_{jk}(t)}{ d\, t} \right]_{j,k} $$ в предположении, что все производные в правой части существуют. Таким образом, дифференцирование матрицы определается как ее поэлементное дифференцирование. Поэтому свойства дифференцирования матриц легко выводятся из соответствующих свойств производных скалярных функций.
Теорема 18. Если соответствующие матричные действия имеют смысл, то справедливы следующие соотношения
$$\frac{ d\, C}{ d\, t}=\mathbb O $$ при постоянной матрице $ C $ (элементы которой не зависят от $ t $); $$\frac{ d\,\left( A(t)+B(t) \right)}{ d\, t}= \frac{ d\, A(t)}{ d\, t}+\frac{ d\, B(t)}{ d\, t} \, ;$$ $$\frac{ d\, C A(t)}{ d\, t}= C\frac{ d\, A(t)}{ d\, t}\ , \quad \frac{ d\, A(t)C}{ d\, t}=\frac{ d\, A(t)}{ d\, t} {\bf C} \, ;$$ $$\frac{ d\, \left(A(t)B(t) \right)}{ d\, t}= \frac{ d\, A(t)}{ d\, t} B (t)+A (t)\frac{ d\, B(t)}{ d\, t} \, . $$ Для квадратной матрицы $ A(t) $ и $ K\in \mathbb N $: $$\frac{ d\, A^K(t)}{ d\, t} =A^{\prime} (t)A^{K-1}(t)+A(t)A^{\prime} (t)A^{K-2}(t) +\dots+A^{K-1}(t)A^{\prime} (t) \, ,$$ а если она коммутирует со своей производной, т.е. $ A(t)A^{\prime} (t)= A^{\prime}(t)A(t) $, то $$\frac{ d\, A^K(t)}{ d\, t}=K A^{\prime} (t)A^{K-1}(t) \, . $$ Для матрицы $ A(t) $, неособенной при любых рассматриваемых значениях $ t $, справедливо: $$\frac{ d\, A^{-1} (t)}{ d\, t} =-A^{-1} (t) \frac{ d\,A(t)}{ d\, t} A^{-1} (t) \, . $$
Матричной экспонентой или экспоненциалом называется матричный ряд $$ \exp ( Z )=e^{ Z } = \sum_{j=0}^{\infty} \frac{Z^j}{j!}=E+Z+\frac{1}{2}Z^2+\frac{1}{3!}Z^3+\dots \, . $$ На основании следствия к теореме $ 13 $ этот ряд сходится и притом абсолютно для любой матрицы $ Z \in \mathbb C^{n\times n} $ . В настоящем пункте мы ограничимся рассмотрением вещественной матрицы $ Z $.
Теорема 19. Если матрицы $ A $ и $ B $ коммутируют, то коммутируют и $ e^{A} $ и $ e^{ B} $: $$ e^{A} e^{B} =e^{B} e^{A}= e^{A+B} \, . $$
Доказательство ☞ ЗДЕСЬ.
Для любой матрицы $ A $ матрица $ e^{A} $ обратима и $ \left( e^{A} \right)^{-1}=e^{-A} $ .
Особое прикладное значение имеет матрица $$ e^{tA}= \sum_{j=0}^{\infty} \frac{t^j}{j!} A^j \, , $$ зависящая от параметра $ t\in \mathbb C $. Если продифференцировать ряд по этому параметру, то на основании теоремы ?? получим: $$ \frac{ d\, e^{t A}}{ d\, t}=\sum_{j=1}^{\infty} \frac{jt^{j-1}}{j!}A^j=A \sum_{j=1}^{\infty} \frac{t^{j-1}}{(j-1)!}A^{j-1}=Ae^{tA} \, . $$ Таким образом, $ e^{t A} $ является решением матричного дифференциального уравнения2) $$ \frac{ d\, X}{ d\, t}= A X \, . $$ Обычно это уравнение рассматривают не относительно квадратной матрицы $ X $, а относительно вектора-столбца $ X_{n\times 1} $, т.е. последнее уравнение представляет матричную запись системы обыкновенных дифференциальных уравнений: $$ \left\{ \begin{array}{cccccc} d\, x_1/d\, t &=&a_{11}x_1+&a_{12}x_2+&\dots+&a_{1n}x_n \, , \\ d\, x_2/d\, t &=&a_{21}x_1+&a_{22}x_2+&\dots+&a_{2n}x_n \, ,\\ \dots & & & &\dots & \\ d\, x_n/d\, t &=&a_{n1}x_1+&a_{n2}x_2+&\dots+&a_{nn}x_n \, . \end{array} \right. $$ При задании начальных условий $$ x_1(t_0)=x_{10},x_2(t_0)=x_{20},\dots , x_n(t_0)=x_{n0} \quad \iff \quad X(t_0)=X_0 $$ решение уравнения $ d\, X \big/ d\, t= A X $ представляет естественное обобщение одномерного (скалярного) случая: $$ X(t)=e^{(t-t_0)A}X_0 \, . $$
В ПУНКТЕ указаны два способа вычисления аналитической функции матрицы. Применим их для нахождения $ e^{t A} $. $$ e^{t A}=Ce^{t A_{\mathfrak J}}C^{-1} $$ и вычисление $ e^{t\, x} $ от клетки Жордана производится по формуле $$ \exp \left( t \cdot \left[ \begin{array}{rrrrr} \lambda & & & & \\ 1 & \lambda & &\mathbb O & \\ 0& 1 & \lambda & & \\ \vdots & & \ddots & \ddots & \\ 0 & 0 & \dots & 1 &\lambda \end{array} \right]_{k\times k}\right)= \left[ \begin{array}{ccccc} e^{\lambda t} & & & & \\ te^{\lambda t} & e^{\lambda t} & &\mathbb O & \\ \frac{t^2}{2!}e^{\lambda t}& te^{\lambda t} & e^{\lambda t} & & \\ \vdots & & \ddots & \ddots & \\ \frac{t^{k-1}}{(k-1)!}e^{\lambda t} & \frac{t^{k-2}}{(k-2)!}e^{\lambda t} & \dots & te^{\lambda t} & e^{\lambda t} \end{array} \right]= $$ $$ =e^{\lambda t} \left( E+ t H_1 + \frac{t^2}{2!}H_2+\dots+ \frac{t^{k-1}}{(k-1)!} H_{k-1} \right) \, . $$ Матрицы $ \{H_j\} $ определяются в ☝ ПУНКТЕ.
Доказать справедливость равенства: $ \det( e^A ) = e^{\operatorname{Sp} (A )} $.
Пример. Для системы дифференциальных уравнений
$$ \left\{ \begin{array}{ccccc} d\, x_1 / d\, t &=&&x_2&+x_3, \\ d\, x_2 / d\, t &=&x_1&+x_2&-x_3, \\ d\, x_3 / d\, t &=&&x_2&+x_3 \end{array} \right. $$
а) найти решение при $ x_1(0)=1,x_2(0)=1,x_3(0)=1 $;
б) найти все начальные условия $$ x_1(0)=x_{10},x_2(0)=x_{20},x_3(0)=x_{30}\, , $$ для которых решения будут ограниченными при $ t\to +\infty $.
Решение. Здесь $ t_0=0 $, $ \det (A - \lambda E) = - \lambda (\lambda -1)^2 $. $$ A= \underbrace{ \left( \begin{array}{rrr} 2& -1& 1 \\ -1& 1 & 0\\ 1 & -1 & 1 \end{array} \right)}_{C} \underbrace{ \left( \begin{array}{rrr} 0& 0& 0 \\ 0& 1 & 0\\ 0 & 1 & 1 \end{array} \right) }_{{\bf A}_{\mathfrak J}} \underbrace{ \left( \begin{array}{rrr} 1& 0& -1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{array} \right) }_{C^{-1}} $$ $$ e^{t A}= \left( \begin{array}{rrr} 2& -1& 1 \\ -1& 1 & 0\\ 1 & -1 & 1 \end{array} \right) \left( \begin{array}{rrr} 1& 0& 0 \\ 0& e^{t} & 0\\ 0 & te^{t} & e^{t} \end{array} \right) \left( \begin{array}{rrr} 1& 0& -1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{array} \right)= $$ $$ =\left( \begin{array}{rrr} 2-e^{t}+te^t & t\, e^t & -2+ 2\, e^t-t\, e^t \\ -1 +e^t & e^t & 1-e^t \\ 1 -e^t+t\, e^t& t\, e^t & -1+2\, e^t-t\, e^t \end{array} \right) \, . $$ Домножая эту матрицу справа на столбец $ [1,1,1]^{^{\top}} $, получаем $$x_1(t)=e^t(1+t),\, x_2(t)=e^t,\, x_3(t)=e^t(1+t) \, . $$
Для решения б) домножим последнюю матрицу справа на столбец $ [x_{10},x_{20},x_{30}]^{^{\top}} $. Получившийся столбец можно представить в виде линейной комбинации трех: $$ \left( \begin{array}{c} 2x_{10}-2x_{30} \\ -x_{10}+x_{30} \\ x_{10} - x_{30} \end{array} \right) +e^t \left( \begin{array}{c} -x_{10}+2\,x_{30} \\ x_{10}+x_{20}-x_{30} \\ -x_{10} +2\, x_{30} \end{array} \right) +t\, e^t \left( \begin{array}{c} x_{10}+x_{20}-x_{30} \\ 0 \\ x_{10}+x_{20}-x_{30} \end{array} \right) $$ Решение может быть ограниченным лишь при условии, когда столбцы при $ e^t $ и $ t\, e^t $ будут нулевыми. Решаем получившуюся систему линейных однородных уравнений относительно $ x_{10},x_{20} $ и $ x_{30} $, получаем, что при любом $ x_{30} $ решение, проходящее через точку $ [2\, x_{30},-x_{30},x_{30}]^{^{\top}} $ будет ограниченным; более того, оно будет стационарным, т.е. не покинет этой точки при изменении $ t $. ♦
Пример. Найти решение системы дифференциальных уравнений
$$ \left\{ \begin{array}{ccrrrr} d\, x_1 / d\, t &=&-9\,x_1&+12\,x_2&-7\,x_3 &-7\, x_4, \\ d\, x_2 / d\, t &=&-25\,x_1&+35\,x_2&-20\,x_3&-22\, x_4 , \\ d\, x_3 / d\, t &=&-16\,x_1&+24\,x_2&-14\,x_3&-15\, x_4, \\ d\, x_4 / d\, t &=&-17\,x_1&+22\,x_2&-12\,x_3&-14\, x_4, \end{array} \right. $$ при $ x_1(0)=1,x_2(0)=0,x_3(0)=1,x_4(0)=0 $.
Решение. Имеем: $$ f(\lambda)=\det (A-\lambda E) = \lambda^4+2\lambda^3+6\lambda^2+2\lambda+5 \, .$$ Спектр матрицы $ \{ -1 \pm 2 \mathbf i, \ \pm \mathbf i \} $ состоит из мнимых чисел. Для вычисления $ e^{At} $ можно воспользоваться теоремой 17. Вычисления частных при делении $ f(\lambda) $ на линейные полиномы $ \lambda- \lambda_{\ast} $ и $ \lambda- \overline{\lambda_{\ast}} $ упрощаются соображениями комплексной сопряженности: $$ f_1(\lambda)\equiv \frac{f(\lambda)}{\lambda-(-1+2 \mathbf i))}\equiv \lambda^3+(1+2 \mathbf i)\lambda^2+\lambda+(1+2 \mathbf i), $$ $$ f_2(\lambda)\equiv \frac{f(\lambda)}{\lambda-(-1-2 \mathbf i))}\equiv \overline{f_1(\lambda)} \equiv \lambda^3+(1-2 \mathbf i)\lambda^2+\lambda+(1-2 \mathbf i), $$ $$ f_3(\lambda)\equiv \frac{f(\lambda)}{\lambda-\mathbf i}\equiv \lambda^3+(2+\mathbf i)\lambda^2+(5+2\mathbf i)\lambda+5 \mathbf i \, , $$ $$ f_4(\lambda)\equiv \frac{f(\lambda)}{\lambda+\mathbf i}\equiv \overline{f_3(\lambda)} \equiv \lambda^3+(2-\mathbf i)\lambda^2+(5-2\mathbf i)\lambda-5 \mathbf i \, . $$ Аналогичное упрощение возникает и при вычислениях полиномов от матрицы, т.е. $ \{f_j(A)\} $: $$ f_1(A)= \left( \begin{array}{rrrr} 32+26 \mathbf i & -40-20 \mathbf i & 20+10 \mathbf i & 28+4 \mathbf i \\ 73+88 \mathbf i & -98-76 \mathbf i & 49+38 \mathbf i & 74+26 \mathbf i\\ 54+46 \mathbf i & -68-36 \mathbf i & 34+18 \mathbf i & 48+8 \mathbf i\\ 42+66 \mathbf i & -60-60 \mathbf i & 30+30 \mathbf i & 48+24 \mathbf i \end{array} \right)\, , f_2(A)=\overline{f_1(A)} , $$ $$ f_3(A)= \left( \begin{array}{rrrr} 7-\mathbf i & -2+14 \mathbf i & -3-9 \mathbf i & 2-12 \mathbf i\\ 17-6 \mathbf i &2+36 \mathbf i &-12-21 \mathbf i & -1-31 \mathbf i \\ 13-9 \mathbf i & 10+30 \mathbf i & -15-15 \mathbf i & -8-26 \mathbf i \\ 7-\mathbf i &-2+14 \mathbf i & -3-9 \mathbf i & 2-12 \mathbf i \end{array} \right)\, , f_4(A)=\overline{f_3(A)} . $$ Формулы решения системы дифференциальных уравнений по формуле $$ \left(\sum_{j=1}^4 e^{\lambda_j t} \frac{f_j(A)}{f_j(\lambda_j)}\right) \left( \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array} \right) \, . $$ приводим к вещественному виду с использованием формулы Эйлера представления экспонент от мнимых чисел: $$ e^{\lambda_j t} = e^{t \mathfrak{R}\mathbf{e} (\lambda_j) } \left\{\cos ( t \mathfrak{I}\mathbf{m}(\lambda_j)) + \mathbf i \sin ( t \mathfrak{I}\mathbf{m}(\lambda_j)) \right\} \, . $$
Ответ. $$ x_1(t)=\frac{1}{5}( 17 e^{-t} \cos (2t)-31 e^{-t} \sin (2t) -2 \cos t - \sin t )\, , $$ $$ x_2(t)=\frac{1}{10}( 59 e^{-t} \cos (2t)-187 e^{-t} \sin (2t) -59 \cos t - 17\sin t )\, , $$ $$ x_3(t)=\frac{1}{5}( 28 e^{-t} \cos (2t)-54 e^{-t} \sin (2t) -23 \cos t - 14\sin t )\, , $$ $$ x_4(t)=\frac{1}{10}( 12 e^{-t} \cos (2t)-66 e^{-t} \sin (2t) -12 \cos t - \sin t )\, . $$
Если при любых начальных условиях решение уравнения $$ \frac{ d\, X}{ d\, t}= A X \, . $$ ограничено при $ t \to +\infty $, то будем называть это уравнение устойчивым по Ляпунову. Устойчивое уравнение называется асимптотически устойчивым по Ляпунову если все решения стремятся к $ \mathbb O_{n\times 1} $ при $ t \to +\infty $. Уравнение называется неустойчивым по Ляпунову, если существует хотя бы один набор начальных условий, для которого соответствующее решение $ X(t) $ неограничено при $ t \to +\infty $.
В дальнейшем будем говорить просто об устойчивости, имея в виду устойчивость по Ляпунову.
Представление решения уравнения формулой $$ X(t)=e^{(t-t_0)A}X_0 $$ позволяет свести исследование устойчивость этого уравнения к анализу спектра матрицы $ A $, либо же — в случае наличия кратных собственных чисел матрицы — к анализу ее жордановой нормальной формы $ A_{\mathfrak J} $.
Теорема 20. Уравнение $ d\, X \big/ d\, t= A X $
а) устойчиво тогда и только тогда, когда $$ \mathfrak{R}\mathbf{e} (\lambda_j) \le 0 \quad npu \ j \in \{1,\dots,n\} \, ,$$ и клетки Жордана в ЖНФ $ A_{\mathfrak J} $, соответствующие собственным числам с $ \mathfrak{R}\mathbf{e} (\lambda_j) = 0 $, имеют порядок $ 1 $;
б) асимптотически устойчиво тогда и только тогда, когда $$ \mathfrak{R}\mathbf{e} (\lambda_j) < 0 \quad npu \ j \in \{1,\dots,n\} $$ (т.е. спектр матрицы $ A $ лежит в левой полуплоскости комплексной плоскости).
Конструктивная проверка последнего условия возможна чисто алгебраическими методами. Действительно, это условие означает устойчивость характеристического полинома $ f(\lambda)=\det (A-\lambda E) $ и может быть проверено с помощью критериев Рауса или Льенара-Шипара за конечное число элементарных операций над коэффициентами.
Уравнение $ d\, X \big/ d\, t= A X $ с симметричной матрицей $ A $
а) устойчиво тогда и только тогда, когда матрица отрицательно полуопределена;
б) асимптотически устойчиво тогда и только тогда, когда матрица отрицательно определена.
Решение дифференциального уравнения второго порядка, описывающего, например, закон Гука $$\frac{ d\,^2 x}{ d\, t^2}= a\, x \ , \ \{ x,a,t\} \subset \mathbb R, \ x(t_0)=x_0, \frac{ d\, x(t)}{ d\, t}\Bigg|_{t=t_0}= x_0^{\prime} $$ представимо в виде $$ x(t)=\left\{ \begin{array}{ccc} \displaystyle \frac{\sqrt{a}x_0+x_0^{\prime}}{2\sqrt{a}} e^{\sqrt{a}(t-t_0)} + \frac{x_0-x_0^{\prime}}{2\sqrt{a}} e^{-\sqrt{a}(t-t_0)} & npu & a>0, \\ \displaystyle x_0 \cos \left( \sqrt{|a|}(t-t_0) \right) + \frac{x_0^{\prime}}{\sqrt{|a|}} \sin \left( \sqrt{|a|}(t-t_0) \right) & npu & a<0, \\ x_0+x_0^{\prime}(t-t_0) & npu & a=0 \, . \end{array} \right. $$ По аналогии поставим задачу поиска решения для системы уравнений $$ \frac{ d^2 X}{ d\, t^2}=AX $$ при матрице $ A \in \mathbb R^{n\times n} $. Желательно найти такие матричные аналоги для используемых операций, чтобы формулы для решения сохранили тот же вид. Аналогами тригонометрических функций являются матричные синус и косинус: $$ \sin Z = \sum_{j=1}^{\infty} (-1)^{j-1}\frac{Z^{2j-1}}{(2j-1)!}= Z- \frac{Z^3}{3!}+\frac{Z^5}{5!}-\dots $$ $$ \cos Z = \sum_{j=0}^{\infty} (-1)^{j}\frac{Z^{2j}}{(2j)!}= E- \frac{Z^2}{2!}+\frac{Z^4}{4!}-\dots $$ На основании следствия к теореме $ 13 $ оба ряда сходятся при любой матрице $ Z \in \mathbb C^{n\times n} $.
Пример. Вычислить $ \cos $ и $ \sin $ от матрицы
$$ A=\left( \begin{array}{rr} 0 & 1 \\ -1 & 0 \end{array} \right) \, . $$
Решение проведем двумя способами. Сначала следуем формальному определению. $$ A^2= \left( \begin{array}{rr} -1 & 0 \\ 0 & -1 \end{array} \right),\ A^3= \left( \begin{array}{rr} 0 & -1 \\ 1 & 0 \end{array} \right), \ A^4= \left( \begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array} \right), \ A^5= \left( \begin{array}{rr} 0 & 1 \\ -1 & 0 \end{array} \right) = A, $$ $$ A^6= \left( \begin{array}{rr} -1 & 0 \\ 0 & -1 \end{array} \right)=A^2,\dots $$ Очевидна цикличность получающейся матричной последовательности. $$ \cos A= \left( \begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array} \right)-\frac{1}{2} \left( \begin{array}{rr} -1 & 0 \\ 0 & -1 \end{array} \right) + \frac{1}{4!} \left( \begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array} \right) - \dots = $$ $$ = \left( \begin{array}{cc} 1+1/2+1/4!+\dots & 0 \\ 0 & 1+1/2+1/4!+\dots \end{array} \right) = \left( \begin{array}{cc} (e+e^{-1})/2 & 0 \\ 0 & (e+e^{-1})/2 \end{array} \right) \, . $$ Аналогично: $$ \sin A= \left( \begin{array}{cc} 0 & (e-e^{-1})/2 \\ -(e-e^{-1})/2 & 0 \end{array} \right) \, . $$ А теперь проверим с помощью интерполяционного представления. Вычислим характеристический полином: $$ \det (A-\lambda E) = \lambda^2 +1 \equiv (\lambda- \mathbf i)(\lambda+ \mathbf i) \, . $$ Тогда $$ \cos A = \frac{\cos \mathbf i}{2\mathbf i} (A+\mathbf i E) + \frac{\cos (-\mathbf i)}{-2\mathbf i} (A-\mathbf i E)=E \cos \mathbf i \, . $$ Хотя и трудно поверить, но можно формально проверить справедливость равенства $$ \cos \mathbf i = \frac{e+e^{-1}}{2} \, . $$ То есть косинус чисто мнимого числа равен числу вещественному (да еще и большему $ 1 $)! Но это действительно следует из формального определения косинуса как суммы степенного ряда. ♦
Теорема 21. Справедливо основное тригонометрическое тождество
$$ \cos^2 Z + \sin^2 Z \equiv E_{n\times n} \, . $$
Сложности возникают при определении $ \sqrt{ A} $. Формально, корнем квадратным из матрицы $ {\mathbf A} $ называется решение матричного уравнения $$ X^2=A $$ Уже для матриц второго порядка это уравнение не всегда разрешимо: например, не существует решения при $$A = \left( \begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \ . $$ С другой стороны, при $$A = \left( \begin{array}{rr} -1 & 0 \\ 0 & -1 \end{array} \right) $$ существует бесконечное множество решений $$ X= \left( \begin{array}{cc} \alpha & -(\alpha^2+1)/\beta \\ \beta & -\alpha \end{array} \right) \ , $$ задаваемое двумя параметрами $ \alpha $ и $ \beta \ne 0 $.
Теорема 22. Решение уравнения
$$ X^2=A $$
а) всегда существует при $ \det A \ne 0 $;
б) всегда существует среди вещественных симметричных матриц, если $ A $ — симметричная и положительно полуопределенная.
Доказательство проведем только для б). Симметричная матрица $ A $ приводится к диагональному виду с помощью ортогональной матрицы: $$ P^{^{\top}}{\mathbf A}P= \left( \begin{array}{cccc} \lambda_1 & & & \mathbb O \\ & \lambda_2 & & \\ && \ddots & \\ \mathbb O && & \lambda_n \end{array} \right) \quad npu \quad P^{^{\top}}=P^{-1} \ . $$ Легко видеть, что матрица $$ X= P \left( \begin{array}{cccc} \sqrt{\lambda_1} & & & \mathbb O \\ & \sqrt{\lambda_2} & & \\ && \ddots & \\ \mathbb O&& & \sqrt{\lambda_n} \end{array} \right)P^{^{\top}} $$ является решением уравнения $ X^2=A $. Здесь под $ \sqrt {.} $ понимается произвольное значение квадратного корня. Это значение будет вещественным при $ \lambda_j\ge 0 $. Если матрица $ A $ положительно полуопределена, то все $ \lambda_j $ неотрицательны. Таким образом, последняя формула определяет вещественное решение; матрица $ X $ будет симметричной и может быть выбрана положительно полуопределенной. ♦
Пример. Вычислить
$$\sqrt{ \left( \begin{array}{rrr} 24 & 6 & -12 \\ 6 &33 & 6\\ -12 & 6 & 24 \end{array} \right) } \ . $$
Решение. $ \det (A - \lambda E) = - (\lambda-9) (\lambda -36)^2 $. Поскольку матрица $ A $ симметрична, то привести ее к диагональному виду можно с помощью ортогональной матрицы $ C $. Мы, однако же, используем общий алгоритм диагонализации чтобы получить возможно большее число ответов: $$ {\mathbf A}= \underbrace{ \left( \begin{array}{rrr} 1& 0& 2 \\ 2& 2 & -1\\ 0 & 1 & 2 \end{array} \right)}_{C} \underbrace{ \left( \begin{array}{rrr} 36& 0& 0 \\ 0& 36 & 0\\ 0 & 0 & 9 \end{array} \right) }_{{\mathbf A}_{\mathfrak J}} \underbrace{ \left( \begin{array}{rrr} 5/9& 2/9& -4/9 \\ -4/9 & 2/9 & 5/9 \\ 2/9 & -1/9 & 2/9 \end{array} \right)}_{C^{-1}} $$ $$ \sqrt{{\mathbf A}}= \underbrace{ \left( \begin{array}{rrr} 1& 0& 2 \\ 2& 2 & -1\\ 0 & 1 & 2 \end{array} \right)}_{C} \underbrace{ \left( \begin{array}{rrr} \pm 6& 0& 0 \\ 0& \pm 6 & 0\\ 0 & 0 & \pm 3 \end{array} \right) }_{\sqrt{{\mathbf A}_{\mathfrak J}}} \underbrace{ \left( \begin{array}{rrr} 5/9& 2/9& -4/9 \\ -4/9 & 2/9 & 5/9 \\ 2/9 & -1/9 & 2/9 \end{array} \right) }_{C^{-1}} $$
Ответ. $ \sqrt{A}= $ $$ \pm\underbrace{ \frac{1}{3}\left( \begin{array}{rrr} 14& 2& -4 \\ 2 & 17 & 2 \\ -4 & 2 & 14 \end{array} \right)}_{+++\ \sqrt{A_{\mathfrak J}}} \ ; \ \pm\underbrace{ \frac{1}{3}\left( \begin{array}{rrr} 14& 2& -4 \\ 34 & 1 & -38 \\ 12 & -6 & -6 \end{array} \right)}_{+-+\ \sqrt{A_{\mathfrak J}}} \ ; \ \pm\underbrace{ \left( \begin{array}{rrr} -2& -2& 4 \\ -2 & -5 & -2 \\ 4 & -2 & -2 \end{array} \right)}_{--+\ \sqrt{A_{\mathfrak J}}} \ ; \ $$ $$ \pm\underbrace{ \frac{1}{3}\left( \begin{array}{rrr} 6& 6& -12 \\ 38 & -1 & -34 \\ 4 & -2 & -14 \end{array} \right)}_{+-- \ \sqrt{A_{\mathfrak J}}} \ . $$
Теорема 23. Если $ A $ —симметричная матрица такая, что
то рекуррентная матричная последовательность $$ X_0=\mathbb O, \ \left\{ X_{j}=X_{j-1}+\frac{1}{2}(A-X_{j-1}^2) \right\}_{j=1}^{\infty} $$ сходится к положительно определенному квадратному корню из $ A $.
Условия на матрицу $ A $ эквивалентны тому, что ее спектр целиком лежит в интервале $ [0,1] $ (следствие ☞ теоремы Коши ).
Пример. Для
$$ A=\left(\begin{array}{rrr} 0.541667 & 0.205342 & -0.372008 \\ 0.205342 & 0.811004 & 0.166667 \\ -0.372008 & 0.166667 & 0.522329 \end{array} \right) $$ имеем (все матрицы — симметричные) $$ X_0=\mathbb O_{3\times 3}, X_1=\left(\begin{array}{rrr} 0.2708335 & 0.102671 & -0.186004\\ \ast & 0.405502 & 0.083333\\ \ast & \ast & 0.261164 \end{array} \right), \dots, $$ $$ X_{12}=\left(\begin{array}{rrr} 0.640657 & 0.167720& -0.315098\\ \ast & 0.871895 & 0.147379\\ \ast & \ast & 0.630487 \end{array} \right) $$ и $$ X_{12}^2-A \approx \left(\begin{array}{rrr} -0.004 & 0.0019 & -0.0038\\ \ast & -0.0009& 0.0019\\ \ast & \ast & -0.0038 \end{array} \right) \, . $$
Демидович Б.П. Лекции по математической теории устойчивости. М.: Изд-во МГУ: ЧеРо, 1998