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Abstract. The problem discussed herein is the one of finding the
set of stationary points for the Coulomb potential function F (P ) =∑K

j=1 mj/|PPj | for the cases of K = 3 and K = 4 positive charges

{mj}K
j=1 fixed at the positions {Pj}K

j=1 ⊂ R
2. Our approach is based on

reducing the problem to that of evaluation of the number of real solution
of an appropriate algebraic system of equations. We also investigate the
bifurcation picture in the parameter domains.

Keywords: Coulomb potential · Stationary points · Maxwell’s conjec-
ture

1 Introduction

Given the coordinates of K ≥ 3 points {Pj}Kj=1 ⊂ R
3 , find the coordinates of

stationary points for the function

F (P ) =
K∑

j=1

mj

|PPj | . (1)

Here {mj}Kj=1 are assumed to be real non-zero numbers and |·| stands for the
Euclidian distance.

This problem can be viewed as a classical electrostatics one with the function
(1) representing the Coulomb potential of the charges {mj}Kj=1 placed at fixed
(stationary) positions {Pj}Kj=1 in the space. Thus, the stated problem can be con-
sidered as an origin for the general problem of simulation or motions of charged
particles in electric or magnetic fields; the stationary point of the potential cor-
responds then to the equilibrium position of a probe particle. On the other hand,
the function (1) can also be interpreted as the Newton (gravitational) potential
with {mj}Kj=1 treated as masses fixed at {Pj}Kj=1. Despite its classical looking
formulation, the problem has not been given a systematic exploration — with
the exception of some special configurations like the one treated in [3] where
the points {Pj}Kj=1 make an equilateral polygon and all the charges {mj}Kj=1 are
assumed to be equal. The difficulty of the problem can be acknowledged also
from the state of the art with its part known as
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Maxwell’s Conjecture [7]. The total number of stationary points of any con-
figuration with K charges in R

3 never exceeds (K − 1)2.
This conjecture was investigated in [4,8] with the aid of some topological prin-

ciples. However, it remains still open even for the case of K = 3 equal charges.
The coordinates of stationary points of the function (1) satisfy the system of

equations
DF

DP
= O ⇐⇒

K∑

j=1

mj(P − Pj)
|PPj |3 = O . (2)

Solving this system with the aid of numerical iteration methods, like the gradient
descent one, can lead one to poor convergence due to the unbounded growth of
iteration values when the solution being searched lies in a close neighborhood of
a charge location.

The present paper is devoted to an alternative approach for solving the system
(2) based on symbolic computations. We first intend to eliminate radicals from the
system (2), i.e. to reduce it to a system polynomially dependent on the coordinates
of the point P . This can be done in different ways, and therefore it is quite reason-
able to look for the procedure which can diminish the degrees of the final algebraic
equations. For this purpose, we are going to exploit an approach suggested in the
paper [11] where the general problem of finding the stationary point set for the
function F (P ) =

∑K
j=1 mj |PPj |L for arbitrary values of the exponent L �= 0 was

treated. Then, for the obtained algebraic system, we solve the problem of localiza-
tion of its solutions, i.e. we aim at finding the true number of real solutions and
separating them. The mathematical background for this approach is based on the
technique of elimination of variables from the algebraic systems with the aid of
the resultant computation. Our analysis of the behavior of the stationary point set
in its dependency on the parameters involved into the problem (like the values of
charges or coordinates of charge location) will be essentially based on the discrim-
inant sign evaluation. We refer the reader to [2,5,10] for brushing up some basic
results of Elimination Theory utilized in the foregoing sections.

We will deal here only with the cases of potential generated by 3 or 4 positive
charges located on the plane. One possible misunderstanding should be cleared
out in connection with this assumption. In some examples given below, we use
the expressions minimum or stable stationary point. The Earnshaw’s theorem
states that a collection of point charges in R

3 cannot be maintained in a stable
stationary equilibrium configuration solely by the electrostatic interaction of the
charges [9]. Therefore, the term stability hereinafter should be understood as the
conditional stability in the plane of charges location.

2 Three Points

Let the points {Pj = (xj , yj)}3j=1 be noncollinear, i.e. the determinant

S =

∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
(3)
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does not vanish. For definiteness, we will assume hereinafter that the points
P1, P2, P3 are counted counterclockwise, i.e. the determinant (3) is positive.

Stationary points of the Coulomb potential

F (P ) =
m1

|PP1| +
m2

|PP2| +
m3

|PP3| (4)

are given by the system of Eq. (2) which, for this particular case, can be written
down as ⎧

⎪⎪⎨

⎪⎪⎩

m1(x − x1)
|PP1|3 +

m2(x − x2)
|PP2|3 +

m3(x − x3)
|PP3|3 = 0,

m1(y − y1)
|PP1|3 +

m2(y − y2)
|PP2|3 +

m3(y − y3)
|PP3|3 = 0.

(5)

In order to transform this system into an algebraic one, the straightforward app-
roach can be utilized consisting in successive squaring of the equations and elimi-
nating the radicals one by one. If one denotes by A1, A2 and A3 the summands in
any of the above equations, then this procedure is executed as follows

A1+A2+A3 = 0 ⇒ (A1+A2)2 = A2
3 ⇒ (2A1A2)2 = (A2

3−A2
1−A2

2)
2 .

However this approach (tackled in [6] for finding a boundary for the number of
stationary points) results in a drastic increase of the order and complexity of the
final algebraic equations. The resulting system can be reduced to an algebraic one

F1(x, y,m1,m2,m3) = 0, F2(x, y,m1,m2,m3) = 0

where F1, F2 are polynomials of the degree 28 with respect to the variables x
and y (and with the coefficients of the orders up to 1019 for Example 1 treated
below). Finding all the real solutions of this system with the aid of elimination of
variable procedure (resultant or the Gröbner basis computation [2]) is a hardly
feasible task.

An alternative approach for reducing the system (5) to an algebraic one was
suggested in [11]. It is based on the following result:

Theorem 1. Set

S1(x, y) =

∣∣∣∣∣∣

1 1 1
x x2 x3

y y2 y3

∣∣∣∣∣∣
, S2(x, y) =

∣∣∣∣∣∣

1 1 1
x1 x x3

y1 y y3

∣∣∣∣∣∣
, S3(x, y) =

∣∣∣∣∣∣

1 1 1
x1 x2 x
y1 y2 y

∣∣∣∣∣∣
. (6)

Any solution of the system (5) is a solution of the system

m1 : m2 : m3 = |PP1|3S1(x, y) : |PP2|3S2(x, y) : |PP3|3S3(x, y) . (7)

The underlying idea of the proof of this theorem is simple: system (5) can be
treated as a linear one with respect to the parameters m1,m2,m3 and therefore
can be resolved with the aid of Cramer’s formulae, which are equivalent to (7).

Squaring the ratio (7) gives rise to the following algebraic system

m2
2S

2
1 |PP1|6 − m2

1S
2
2 |PP2|6 = 0, m2

2S
2
3 |PP3|6 − m2

3S
2
2 |PP2|6 = 0 . (8)
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Example 1. Let P1 = (1, 1), P2 = (5, 1), P3 = (2, 6). Analyse the structure of the
set of stationary points of the potential (4) for m1 = 1 and for m2,m3 treated
as parameters.

Solution. The system (8) is as follows
⎧
⎪⎪⎨

⎪⎪⎩

F̃1(x, y,m2,m3) = (5x + 3 y − 28)2(x2 + y2 − 2x − 2 y + 2)3m2
2

−(5x − y − 4)2(x2 + y2 − 10x − 2 y + 26)3 = 0,

F̃2(x, y,m2,m3) = (4 y − 4)2(x2 + y2 − 4x − 12 y + 40)3m2
2

−m2
3(5x − y − 4)2(x2 + y2 − 10x − 2 y + 26)3 = 0

(9)

and the degree of F̃1 and F̃2 with respect to the variables x and y equals 8.
This time, in comparison with the approach mentioned at the beginning of the
present section, it is realistic to eliminate any variable from this system. For
instance, the resultant of these polynomials treated with respect to x

Y(y,m2,m3) = Rx(F̃1, F̃2) (10)

is1 the polynomial of the degree 34 in y . For any specialization of parameters
m2 and m3, it is possible to find the exact number of real zeros and to localize
the latter in the ideology of symbolic computations, e.g., via the Sturm series
construction or via Hermite’s method [5]. For instance, there exist 2 stationary
points

S1 ≈ (2.666216, 1.234430), S2 ≈ (2.744834, 3.244859)

for the case m2 = 2,m3 = 2, and 4 stationary points

S1 ≈ (1.941246, 2.552370),S2 ≈ (2.655622, 1.638871), S3 ≈ (3.330794, 2.826444),

and
N ≈ (2.552939, 2.271691)

for the case m2 = 2,m3 = 4. Hereinafter we denote by S the saddle-type sta-
tionary point and by N the minimum point.

In order to find the boundary in the parameter (m2,m3)-plane between the
two distinct qualitative pictures — i.e. two vs. four stationary points — let us
find the discriminant curve. Any pair of bifurcation values corresponds to the
case when at least one stationary point becomes degenerate, i.e. if these bifur-
cation values are perturbed somehow, this stationary point either splits into
(at least) two ordinary, nondegenerate stationary points or disappears at all.
Therefore these bifurcation values for parameters can be found from the con-
dition of changing the number of real solutions of the system (9). Hence, the
bifurcation values correspond to the case when the multiple zero for the polyno-
mial (10) appears. This condition is equivalent to vanishing of the discriminant

Dy(Y) = Ry(Y,Y ′
y) . (11)

1 On excluding an extraneous factor.
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This is a huge polynomial, which can be factored over Z as

Ξ2(m2,m3)Ψ(m2,m3) with deg Ξ = 444,deg Ψ = 48 .

The condition Ξ(m2,m3) = 0 corresponds to the case where the multiple zero
for (11) appears due to the coincidence of the values of y-components for a
pair of distinct solutions of the system (9) while the condition

Ψ(m2,m3) = 0 (12)

corresponds in the (m2,m3)-plane to the case of appearance of at least one
degenerate zero for (9). The polynomial Ψ(m2,m3) is an even one with respect
to the involved parameters, and its expansion in powers of these parameters
contains 325 terms. The complete expression can be found in [12], while here we
demonstrate just only its terms of the highest and the lowest orders:

Ψ(m2,m3) = 336(64m2
3 + 192m2m3 + 169m2

2)
5(64m2

3 − 192m2m3 + 169m2
2)

5×

(28561m4
2 + 19968m2

2m
2
3 + 4096m4

3)
7

+ . . .

+22 ·331 ·1740(5545037166327m4
2−161882110764644m2

2m
2
3+1656772227072m4

3)

+23 · 336 · 1744(51827m2
2 + 28112m2

3) + 336 · 1748 .

Drawing out the 48th order algebraic curve (12) is looking like an impossible
mission. Fortunately2, we have succeeded to do this. Since we are dealing with
positive values of parameters, in Fig. 1 we present only the 4 “arrowhead”-looking
branches of the curve lying in the first quadrant of the (m2,m3)-plane. Only one
of these branches is the true bifurcation curve — the one presented in Fig. 2.
The coordinates of its “vertices”, i.e. singular points, are as follows:

M1 ≈ (1.812918, 2.575996),M2 ≈ (2.886962, 5.667175),

M3 ≈ (1.236728, 3.556856) .

The values of the parameters lying in the interior of this branch, i.e. satisfying
the inequality Ψ(m2,m3) < 0, correspond to the case of existence of (precisely)
4 stationary points for the potential, while those lying outside this branch — to
that of 2 stationary points.

It is worth mentioning, that for the case of existence of 4 stationary points,
one of them is necessarily the minimum point for the potential, or, in terms of
the differential equation theory, it gives the (asymptotically) stable equilibrium
position for the vector field generated by the given configuration of charges. The
condition Ψ(m2,m3) < 0 can therefore be tackled as a necessary one for the
existence of the minimum (stable) point for the potential function; it should

2 Thanks to the open-source mathematical software system Sage, http://www.
sagemath.org.

http://www.sagemath.org
http://www.sagemath.org


On Maxwell’s Conjecture for Coulomb Potential Generated by Point Charges 73

Fig. 1. Discriminant curve

Fig. 2. Stability domain in parameter plane
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be considered as a tight condition for stability in the set of semi-algebraic con-
ditions. It can be transformed into the necessary and sufficient conditions via
supplementing it with the system of linear inequalities providing the interior
of the triangle M1M2M3. As for the simple sufficient conditions for the exis-
tence of a stable point, one can obtain them in the form of system of linear
inequalities providing a triangle N1N2N3 lying inside the stability domain. For
instance, one of such a triangle has the vertices N1 = (1.8, 3), N2 = (2.6, 5.1)
and N3 = (1.4, 3.6).

The choice of the point (m2,m3) right on the discriminant curve corresponds
to the case when stationary point set contains precisely 3 points. For instance,
for

(m2,m3) ≈ (1.842860, 4.157140)

(this point is marked in Fig. 2) the stationary point set consists of

Ŝ1 ≈ (2.691693, 1.930238), (13)

S2 ≈ (1.821563, 2.558877),S3 ≈ (3.374990, 2.739157) ,

with Ŝ1 being a degenerate stationary point of the saddle-node type. �	
The next challenging problem is that of localization of the stationary points

for the potential (4). The determinant of the Hessian matrix H(F ) computed for
this function at a stationary point P∗ = (x∗, y∗) is positive if P∗ is a minimum
point and negative if it is of saddle type. Therefore the inequality detH(F ) > 0
specifies a sharp (i.e., unimprovable) condition under which the minimum point
exists. One may first compute H(F ) for arbitrary point P = (x, y), and after
that replace in it the parameters m1,m2 and m3 with the aid of the ratio (7).
The resulting condition will depend only on the variables x and y:

Theorem 2. If there exists a minimum point for the potential (4), then it is
located in the domain M of the triangle P1P2P3 defined by the inequality

Φ(x, y) >
2
9
S2 . (14)

Here S is defined by (3) while

Φ(x, y) =
S1(x, y)S2(x, y)S3(x, y)

|PP1|2|PP2|2|PP3|2 C(x, y) (15)

where

C(x, y) = S1(x, y)|PP1|2 + S2(x, y)|PP2|2 + S3(x, y)|PP3|2

≡

∣∣∣∣∣∣∣∣

1 1 1 1
x x1 x2 x3

y y1 y2 y3
x2 + y2 x2

1 + y2
1 x2

2 + y2
2 x2

3 + y2
3

∣∣∣∣∣∣∣∣
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and {Sj(x, y)}3j=1 are defined by (6). Conversely, any point P∗ = (x∗, y∗) lying
in M is a minimum point for the potential (4) with any specialization of charges
m1,m2,m3 proportional to the values

m∗
1 = S1(x∗, y∗)|P∗P1|3, m∗

2 = S2(x∗, y∗)|P∗P2|3, m∗
3 = S3(x∗, y∗)|P∗P3|3 .

For the proof of this theorem we refer to [11].

Example 2. Find the domain M of possible minimum point location for the con-
figuration from Example 1.

Solution.Here3 S = 20 and

Φ(x, y) =
16(28 − 5x − 3 y)(5x − y − 4)(y − 1)(−52 + 30x + 32 y − 5x2 − 5 y2)

((x − 1)2 + (y − 1)2)((x − 5)2 + (y − 1)2)((x − 2)2 + (y − 6)2)
.

The domain M is located inside the oval of the 6th order algebraic curve displayed
in Fig. 3.

1 2 3 4 5

1

2

3

4

5

6

Fig. 3. Domain of possible minimum point location

One might expect that the point chosen on the curve corresponds to such
values of parameters m2 and m3 that provide the degeneracy property of a
stationary point for the potential. This is indeed the case: the one-to-one corre-
spondence can be established between the points on this curve and those on the
curve (12). For instance, the point marked on the curve in Fig. 3 is a degenerate
stationary one for the potential (4) with m1 = 1,m2 ≈ 1.842860,m3 ≈ 4.157140;
its coordinates (13) have appeared in solution of Example 1. �	

To conclude the treatment of the three point case, let us consider the
configuration of equal charges with one of their placement variable .
3 In the article [11], the expressions for S and Φ are provided with typos.



76 A.Y. Uteshev and M.V. Yashina

Example 3. Let P1 = (0, 0), P2 = (1, 0), P3 = (x3, y3) and m1 = m2 = m3 = 1.
Analyse the structure of the set of stationary points of the function (4).

Solution. The idea is similar to the solution of Example 1. We skip the inter-
mediate computations and present the final result: the discriminant curve in
(x3, y3)-parameter plane is given implicitly as

Θ(x3, y3) = 0 . (16)

Here Θ(x3, y3) is the 76th order polynomial with respect to both coordinates.
Its complete expression can be found in [12], while here we demonstrate only the
terms of the highest and the lowest orders:

Θ(x3, y3) =

236·342(9x2
3+8 y2

3)
6(x2

3+y2
3)

32−237·342 x3(155 y2
3+171x2

3)(9x2
3+8 y2

3)
5(x2

3+y2
3)

31

+ . . .

−237 ·342 x3(155 y2
3+171x2

3)(9x2
3+8 y2

3)
5(x2

3+y2
3)+236 ·342(9x2

3+8 y2
3)

6(x2
3+y2

3) .

(There are no terms of degree lesser than 14.) The curve (16) is symmetric
with respect to the line x3 = 1/2 and consists of two branches also symmetric
with respect to the x3-axis; one of these branches is displayed in Fig. 4. The
coordinates of its singular points are as follows4:

Q1 ≈ (0.398295, 0.798718), Q2 ≈ (0.601705, 0.798718), Q3 ≈ (0.5, 1.002671) .

For the point P3 placed inside this curve (Θ(x3, y3) < 0), the potential (4)
possesses 4 stationary points, while for the point P3 lying outside — just 2

Fig. 4. The “upper” branch of the curve (16).

4 Thus, one should not be misled by the visual illusion: the triangle Q1Q2Q3 is not
an equilateral one!



On Maxwell’s Conjecture for Coulomb Potential Generated by Point Charges 77

stationary points. Let us illuminate this statement considering the specialization
x3 = 1/2 which corresponds to the case of the isosceles triangle P1P2P3. The
corresponding stationary point set is symmetric with respect to the triangle
median line x3 = 1/2. One has

Θ(1/2, y3) ≡ 1
248

(65536 y8
3 + 16384 y6

3 − 13824 y4
3 − 15552 y2

3 − 2187)

× (16384 y8
3 + 4096 y6

3 − 6912 y4
3 − 11664 y2

3 − 2187)3T 2(y3) .

Here T (y3) denotes an even polynomial of the degree 22 without real roots, i.e.
T (y3) �= 0 for y3 ∈ R. The roots of the remained factors are the bifurcation
values for y3, and we restrict ourselves here only by positive values:

y∗
3 ≈ 0.824539 and y∗∗

3 ≈ 1.002671.

For the choice y3 ∈ (y∗
3 ; y

∗∗
3 ) the stationary point set consists of 4 points. For

instance, if y3 = 1 then these points are

S1 ≈ (0.520962, 0.424850),S2 ≈ (0.479037, 0.424850),S3 ≈ (0.5, 0.075682),

N ≈ (0.5, 0.423647).

For y3 ∈ (0; y∗
3) ∪ (y∗∗

3 ;∞) the stationary point set consists of 2 points. For
instance, if y3 = 1/2 then these points are:

S1 ≈ (0.267236, 0.219775), S2 ≈ (0.732763, 0.219775) ;

while for the choice y3 = 3/2 both stationary points lie on the line x3 = 1/2:

S1 ≈ (0.5, 0.029031), S2 ≈ (0.5, 0.783949). �	

3 Four Points

We now turn to the case of potential generated by configuration of 4 noncollinear
charges {mj}4j=1 placed at the points {Pj}4j=1

F (P ) =
m1

|PP1| +
m2

|PP2| +
m3

|PP3| +
m4

|PP4| . (17)

The idea of the proof of Theorem 1 can easily be extended to this case. System

4∑

j=1

mj(x − xj)
|PPj |3 = 0,

4∑

j=1

mj(y − yj)
|PPj |3 = 0 (18)

can be resolved — as a linear one — with respect to m1 and m2:
{

m1S3/|PP1|3 = m3S1/|PP3|3 + m4S4/|PP4|3,
m2S3/|PP2|3 = m3S2/|PP3|3 + m4S5/|PP4|3. (19)



78 A.Y. Uteshev and M.V. Yashina

Here S1, S2, and S3 are defined by (6) while

S4(x, y) =

∣∣∣∣∣∣

1 1 1
x x2 x4

y y2 y4

∣∣∣∣∣∣
, S5(x, y) =

∣∣∣∣∣∣

1 1 1
x1 x x4

y1 y y4

∣∣∣∣∣∣
.

Next, the squaring procedure can be applied to both equations of the system (19).
In two steps this results in the algebraic equations of degree 28 in x and y:

F̃1(x, y,m1,m2,m3,m4) = 0, F̃2(x, y,m1,m2,m3,m4) = 0 . (20)

This result should be treated as an essential simplification in comparison with the
squaring algorithm applied directly to system (18): the latter generates algebraic
equations of the degree 72.

Example 4. Let P1 = (1, 1), P2 = (5, 1), P3 = (2, 6), P4 = (4, 5). Analyse the
structure of the set of stationary points of the function (17) for m1 = 1,m2 =
2,m3 = 4 and for m4 treated as parameter.

Solution. The given configuration of charges can be tackled as a perturbation of
the 3 charges configuration from the solution of Example 1 with an extra charge
placed at the position P4.

We eliminate x variable from the system (20) with the aid of the resultant
computation:

Y(y,m4) = Rx(F̃1, F̃2) . (21)

It can be factored over Z as

Y ≡ W (m4)G1(y,m4)G2(y,m4)(y − 1)56(y − 5)16(y − 6)16(4 y2 − 44 y + 125)36 ;

here
W (m4) ≡ m48

4 (m4 − 5)5(m4 + 5)5

and, generically, degy G1 = 180,degy G2 = 156.
The y-components of the zeros of the system (20) are among the zeros of

G2(y,m4). Although we have succeed to compute this polynomial, we have failed
to find its discriminant with respect to the variable y. Therefore we are not able
to provide one with the bifurcation values set for the parameter m4. We have
established that one of these values lies within the interval (4/15; 3/10), and
when the parameter m4 passes through this value while decreasing, the number
of stationary point increases from 3 to 5. For instance, one obtains

S1 ≈ (1.952957, 2.176070), S2 ≈ (4.239198, 2.677284), S3 ≈ (3.154287, 5.396890)

for m4 = 2 and

S1 ≈ (1.988731, 2.474302), S2 ≈ (2.603988, 1.852183), S3 ≈ (3.593059, 2.883524),

S4 ≈ (3.566307, 5.178565),N ≈ (2.560190, 2.031979)

for m4 = 4/15. �	
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In order to confirm Maxwell’s conjecture for the case of K = 4 charges,
we have generated about thirty variants of their configuration. The number of
stationary points never exceeds 7.

Example 5. Find the stationary point set for the system of charges m1 = 1,m2 =
3,m3 = 1,m4 = 3 placed at P1 = (0, 0), P2 = (1/2,−1), P3 = (1, 0), P4 =
(1/2, 1) respectively.

Solution. The quadrilateral P1P2P3P4 is a rhombus, therefore the considered
configuration of charges possesses two axes of symmetry, namely the lines x =
1/2 and y = 0. The symmetry property is inherited by the set of stationary
points of the generated potential:

N1,2 ≈ (0.5,±0.194213),

S1 = (0.5, 0),S2,3 ≈ (0.316723,±0.323720),S4,5 ≈ (0.683276,±0.323720).

Hence, at present we are unable neither to disprove Maxwell’s estimation nor
to ascertain its attainability.

4 Conclusions

Analytical approach for the investigation of the set of stationary points for the
Coulomb potential function F (P ) =

∑K
j=1 mj/ |PPj | in R

2 was developed. The
efficiency of the approach was illuminated for system of K = 3 and K = 4 charges
in case when the values of charges as well as their coordinates are specialized,
i.e. for the case when numerical values for these parameters are assigned, one
can establish the exact number of stationary points and localize them within the
given tolerance in a finite number of elementary algebraic operations. Moreover,
for the case of K = 3 charges, it is possible to find the bifurcation picture in the
domain of parameter variation. In all the examples we have treated Maxwell’s
conjecture was confirmed.

The case of K ≥ 4 points in the space remains for further investigation. On
extrapolating the length of outputs in examples treated in the paper, one may
predict the growth of complexity in computation and analysis of this problem. On
the other hand, it should be mentioned that all the computations for the exam-
ples have been performed on a standard configuration personal computer. Thus,
the planned usage of specialized software implemented on a high-performance
computer looks promising.

The proposed approach for construction of bifurcation diagrams can be
applied for establishing the stability or ultimate boundedness conditions in the
parameter space for wide classes of dynamical systems, such as treated in [1].
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