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Abstract. For the Weber problem of construction of the minimal cost
planar weighted network connecting four terminals with two extra facil-
ities, the solution by radicals is proposed. The conditions for existence
of the network in the assumed topology and the explicit formulae for
coordinates of the facilities are presented. It is shown that the bifacility
network is less costly than the unifacility one. Extension of the results
to the general Weber problem is also discussed.
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1 Introduction

The classical Weber or generalized Fermat-Torricelli problem is stated as that
of finding the point (facility, junction) W = (x∗, y∗) that minimizes the sum
of weighted distances from itself to n ≥ 3 fixed points (terminals) {Pj =
(xj , yj)}n

j=1 in the Euclidean plane:

min
W∈R2

n∑

j=1

mj |WPj |. (1)

Hereinafter | · | stands for the Euclidean distance and the weights {mj}n
j=1 are

assumed to be positive real numbers.
The treatment of the problem in the case n = 3 terminals was first undertaken

in 1872 by Launhardt [4] whose interest stemmed from the evident relation to
the Economic Geography problem nowadays known as Optimal Facility Location.
For instance, one can be interested in minimizing transportation costs for a plant
manufacturing one ton of the final product from {mj}n

j=1 tons of distinct raw
materials located at corresponding {Pj}n

j=1.
Further development of the problem was carried out in 1909 by Alfred Weber

[10]. First, he suggested a different economic interpretation for the three-terminal
problem. Let P3 be a place of consumption of m3 tons of a product produced
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from two different types of raw materials: m1 tons of the first type located at P1

and m2 tons of the second type located at P2, let m3 < m1 + m2. Where is the
optimal location of the production? In the course of the economic background,
Weber formulated the following extension of the problem to the case of four
terminals1.

“Let us take a simple case, an enterprise with three material deposits and
one which is capable of being split, technologically speaking, into two stages. In
the first stage two materials are combined into a half-finished product; in the
second stage this half-finished product is combined with the third material into
the final product. . . Let us suppose that possible location of the split production
would be in W1 and W2; W1 for the first stage and W2 for the second stage.
What will be the result if the splitting occurs?” [10].

Mathematically the stated problem can be formulated as that of finding the
points W1 = (x∗, y∗) and W2 = (x∗∗, y∗∗) which yield

min
{W1,W2}⊂R2

F (W1,W2) where

F (W1,W2) = m1|W1P1| + m2|W1P2| + m3|W2P3| + m4|W2P4| + m|W1W2| (2)

and the weights {mj}4j=1,m are treated as given positive real numbers.
The general Multifacility Weber problem is stated as that of location of the

given number � ≥ 2 of the facility points (or, simply, facilities) {Wi}�
i=1 in R

d

connected to the terminals {Pj}n
j=1 ⊂ R

d that solve the optimization problem

min
{W1,...,W�}⊂Rd

⎧
⎨

⎩

n∑

j=1

�∑

i=1

mij |WiPj | +
�∑

k=1

�−1∑

i=k+1

m̃ik|WiWk|
⎫
⎬

⎭ ; (3)

here some of the weights mij and m̃ik might be zero. We will refer to this value
as to the minimal cost of the network. This problem can be considered as a
natural generalization of the celebrated Steiner minimal tree problem aimed at
construction of the network of minimal length linking the given terminals.

Dozens of papers are devoted to the Weber problem, its ramifications and
applications; we refer to [3,5,11] for the reviews. The majority of them are
concerned with the problem statement where the objective function (3) is free of
the inter-facilities connections. This problem is known as the Multisource Weber
problem or the �-median problem. The present paper is focused on a solution
to the Multifacility Weber problem. The mainstream approach in the treatment
of this nonlinear optimization problem is the one based on reducing it to an
appropriate iterative numerical procedure. For instance, the unifacility version
of the problem (1) can be resolved via the modified Weiszfeld algorithm. The
main obstacle of this approach consists in the fact that the objective (or cost)
function of the Weber problem is non-differentiable at terminal points, and the

1 In the quote we change the original notation of the points.
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iterative procedure might diverge if any of the facilities happens to lie close to
a terminal (or, in case of the multifacility problem, if two facilities are about to
collide).

The present paper is devoted to an alternative approach for the problem,
namely an analytical one. We are looking for the conditions for existence of the
network and the explicit expressions for the facility coordinates in terms of the
problem parameters, i.e. terminal coordinates and weights. This approach has
been originated in the recent paper [6] where the unifacility Weber problem for
three terminals had been solved by radicals. Within the framework of this app-
roach, we will focus here on solution to the planar multifacility Weber problem
for the case of n = 4 terminals and � = 2 facilities (i.e. the problem (2)), and
also for the case of n = 5 terminals and � = 3 facilities.

Our analytical treatment stems from the geometric solution to the prob-
lem originated by Georg Pick and published in the Mathematical Appendix of
Weber’s book [10]. Nevertheless, Pick did not provide any proof of validity for
his algorithm. In the conference paper [8] the present authors have announced
without a proof the claim that the Weber problem (2) is solvable by radicals.
In a simplified version (and with an extra assumption missed in [8]), this state-
ment is now proved in Sect. 3. In addition, the conditions for the existence of the
desired configuration of the network are provided.

In the case of the problem involving variable parameters, analytics provides
one with a unique opportunity to evaluate their influence on the solution. In par-
ticular, it gives the means to determine the bifurcation values for these parame-
ters, i.e. those responsible for the degeneracy of the network topology. We discuss
these issues in Sect. 4 via investigation of the facilities dynamics under variation
of the terminals location or the value of the involved weights. One may imagine a
relevant economic optimization problem with a trawler fishing in the ocean and
a floating fish processing facility drifting in anticipation of the catch transferred
to it. We also prove here that, in the case of existence, the optimal bifacility
network has its cost lower than the unifacility one.

In Sect. 5, we briefly discuss an opportunity for extension of the results to
the case of n ≥ 5 terminals and � ≥ 3 facilities. This extension is based on
the reduction of the problem to a similar one with n − 1 terminals and � − 1
facilities via a replacement of a pair of terminals by a suitable auxiliary phantom
terminal. This trick is just a counterpart of the one utilized in Melzak’s algorithm
for Steiner tree construction.

2 Unifacility Configuration

Analytical solution for the three-terminal problem, i.e. for finding

min
W∈R2

(m1|WP1| + m2|WP2| + m3|WP3|) (4)

is given in [6]. In the present section we assume the vertices Pj = (xj , yj) of the
triangle P1P2P3 be counted counterclockwise. Thus, the value

S = x1y2 + x2y3 + x3y1 − x1y3 − x3y2 − x2y1
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is two times the area of this triangle. Denote

rij = |PiPj | =
√

(xi − xj)2 + (yi − yj)2 for {i, j} ⊂ {1, 2, 3} ,

by α1, α2, α3 the angles of the triangle P1P2P3, while by β1, β2, β3 the angles
of the so-called weight triangle formed by the triple of weights m1,m2,m3. The
value

√
k/4 where

k = (m1 + m2 + m3)(−m1 + m2 + m3)(m1 − m2 + m3)(m1 + m2 − m3) (5)

is the Heron formula for the area of the weight triangle.

Theorem 1. The necessary and sufficient condition for the existence of solution
to the problem (4) is that of the following system of inequalities {cos αj +cos βj >
0}3j=1. Under this condition, the coordinates of the optimal facility W = (x∗, y∗)
are given by the formulae

x∗ =
K1K2K3

2S
√
kd

(
x1

K1
+

x2

K2
+

x3

K3

)
, y∗ =

K1K2K3

2S
√
kd

(
y1
K1

+
y2
K2

+
y3
K3

)

with the cost of the optimal network C =
√

d. Here

d =
1√
k

(m2
1K1 + m2

2K2 + m2
3K3)

= |S|
√
k+

1
2
[
m2

1(r
2
12 + r213 − r223) + m2

2(r
2
23 + r212 − r213) + m2

3(r
2
13 + r223 − r212)

]
,

and ⎧
⎨

⎩

K1 = (r212 + r213 − r223)
√
k/2 + (m2

2 + m2
3 − m2

1)S,

K2 = (r223 + r212 − r213)
√
k/2 + (m2

1 + m2
3 − m2

2)S,

K3 = (r213 + r223 − r212)
√
k/2 + (m2

1 + m2
2 − m2

3)S.

The proof consists in formal verification of the equalities

m1
x∗ − x1

|WP1| + m2
x∗ − x2

|WP2| + m3
x∗ − x3

|WP3| = 0, (6)

m1
y∗ − y1
|WP1| + m2

y∗ − y2
|WP2| + m3

y∗ − y3
|WP3| = 0, (7)

providing the stationary points of the objective function
∑3

j=1 mj |PjW |.
The theorem states that the three-terminal Weber problem is solvable by

radicals. Geometric meaning of the constants appeared in this theorem is as
follows: 1

2 |S| equals the area of the triangle P1P2P3 while 1
4

√
k equals (due to

Heron’s formula) the area of the weight triangle.
We now formulate some technical results to be exploited later.

Theorem 2. If the facility W is the solution to the problem (4) for some config-
uration

{
P1 P2 P3m1 m2 m3

}
then this facility remains unchanged for the configuration

{
P1 P2 P̃3m1 m2 m3

}
with any position of the terminal P̃3 in the half-line WP3.
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Theorem 3. The facility W lies in the segment P3Q1. For any position of the
terminal P3, the facility W lies in the arc of the circle C1 passing through the
points P1, P2 and Q1. Here

Q1 =

(
1
2
(x1 + x2) +

(m2
1 − m2

2)(x1 − x2) − √
k(y1 − y2)

2m2
3

,

1
2
(y1 + y2) +

(m2
1 − m2

2)(y1 − y2) +
√
k(x1 − x2)

2m2
3

)
. (8)

Theorem 4. Let the conditions of Theorem 1 be satisfied. Set

S1 =

∣∣∣∣∣∣

1 1 1
x x2 x3

y y2 y3

∣∣∣∣∣∣
, S2 =

∣∣∣∣∣∣

1 1 1
x1 x x3

y1 y y3

∣∣∣∣∣∣
, S3 =

∣∣∣∣∣∣

1 1 1
x1 x2 x
y1 y2 y

∣∣∣∣∣∣
. (9)

For any value of the weight m3, the optimal facility W lies in the arc of the
algebraic curve of the 4th degree given by the equation

m2
1S

2
2

[
(x − x2)2 + (y − y2)2

]
= m2

2S
2
1

[
(x − x1)2 + (y − y1)2

]
. (10)

We next treat the four-terminal case.

Assumption 1. Hereinafter we will treat the case where the terminals {Pj}4j=1,
while counted counterclockwise, compose a convex quadrilateral P1P2P3P4.

Stationary points of the function
∑4

j=1 mj |WPj | are given by the system of
equations

4∑

j=1

mj(x − xj)
|WPj | = 0,

4∑

j=1

mj(y − yj)
|WPj | = 0. (11)

Though this system is not an algebraic one with respect to x, y, it can be reduced
to this form via successive squaring of every equation. This permits one to apply
the procedure of elimination of a variable via computation of the resultant.
Thereby, the problem of finding the coordinates of the facility W can be reduced
to that of resolving a univariate algebraic equation with coefficients polynomially
depending on {mj , (xj , yj)}4j=1 [9]. The degree of this equation generically equals
12, it is irreducible over Z, and cannot be expected to be solvable by radicals [1].

3 Bifacility Network for Four Terminals

Assumption 2. We will assume the weights of the problem (2) to satisfy the
restrictions

m < m1 + m2, m1 < m + m2, m2 < m + m1, (12)

and
m < m3 + m4, m3 < m + m4, m4 < m + m3. (13)
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From this follows that the values

k12 = (m + m1 + m2)(m − m1 + m2)(m + m1 − m2)(−m + m1 + m2), (14)
k34 = (m + m3 + m4)(m − m3 + m4)(m + m3 − m4)(−m + m3 + m4) (15)

are positive. Additionally we assume the fulfillment of the following inequalities:

(m2 − m2
1 + m2

2)/
√

k12 + (m2 − m2
4 + m2

3)/
√

k34 > 0, (16)

(m2 + m2
1 − m2

2)/
√

k12 + (m2 + m2
4 − m2

3)/
√

k34 > 0. (17)

Theorem 5. Let Assumptions 1 and 2 be fulfilled. Set

τ1 =
√

k12

[√
k34(x4 − x3)− (m2 + m2

3 − m2
4) y3 − (m2 − m2

3 + m2
4) y4

]

+2m2
√

k12 y2 + k12(x1 − x2) + (m2 + m2
1 − m2

2)
[√

k34(y3 − y4)

+ (m2 + m2
1 − m2

2)x1 + (m2 − m2
1 + m2

2)x2 − (m2 + m2
3 − m2

4)x3 − (m2 − m2
3 + m2

4)x4

]
,

τ2 = −
√

k12

[√
k34(x4 − x3)− (m2 + m2

3 − m2
4) y3 − (m2 − m2

3 + m2
4)y4

]

− 2m2
√

k12 y1 − k12(x1 − x2) + (m2 − m2
1 + m2

2)
[√

k34(y3 − y4)

+ (m2 + m2
1 − m2

2)x1 + (m2 − m2
1 + m2

2)x2 − (m2 + m2
3 − m2

4)x3 − (m2 − m2
3 + m2

4)x4

]
,

η1 =
1√
k12

[
(m2 − m2

1 − m2
2)τ1 − 2m2

1τ2
]
,

η2 =
1√
k12

[
2m2

2τ1 − (m2 − m2
1 − m2

2)τ2
]

and set the values for τ3, τ4, η3, η4 via the formulae obtained by the cyclic substi-
tution for subscripts (

1 2 3 4
3 4 1 2

)

in the above expressions for τ1, τ2, η1, η2 correspondingly.
If all the values

δ1 = η2 (x1 − x2) + τ2 (y2 − y1), δ2 = η1 (x1 − x2) + τ1 (y2 − y1), (18)
δ3 = η4 (x3 − x4) + τ4 (y4 − y3), δ4 = η3 (x3 − x4) + τ3 (y4 − y3) (19)

and

δ = −δ1
(
m2 + m2

1 − m2
2

)
√
k12

− δ3
(
m2 + m2

3 − m2
4

)
√
k34

+ (η1 + η2) (y1 − y3) + (τ1 + τ2) (x1 − x3) (20)
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are positive then there exists a pair of points W1 and W2 lying inside P1P2P3P4

that provides the global minimum value for the function (2). The coordinates of
the optimal facility W1 are as follows:

x∗ = x1 − 2 δ1 m2 τ1√
k12Δ

, (21)

y∗ = y1 − 2 δ1 m2 η1√
k12Δ

, (22)

while those of W2:

x∗∗ = x3 − 2 δ3 m2 τ3√
k34Δ

, (23)

y∗∗ = y3 − 2 δ3 m2 η3√
k34Δ

. (24)

The corresponding minimum value of the function (2) equals

C =

√
Δ

4 m3
. (25)

Here
Δ =

[
(η1 + η2)2 + (τ1 + τ2)2

]
. (26)

Proof. (I) We first present some directly verified relations between the values
τ -s , η-s and δ-s.

τ1 =
1

2m2

[√
k12(η1 + η2) + (m2 + m2

1 − m2
2)(τ1 + τ2)

]
, (27)

τ3 =
1

2m2

[
−
√
k34(η1 + η2) − (m2 + m2

3 − m2
4)(τ1 + τ2)

]
, (28)

τ1 + τ2 + τ3 + τ4 = 0, η1 + η2 + η3 + η4 = 0, (29)
4∑

j=1

(xjτj + yjηj) =
Δ

4m4
; (30)

τ2
1 + η2

1 =
m2

1

m2
Δ, (31)

τ1η2 − τ2η1 =
√
k12

2m2
Δ, (32)

τ2η3 − τ3η2 =
√
k12k34

4m4

[
m2 − m2

1 + m2
2√

k12

+
m2 − m2

4 + m2
3√

k34

]
Δ, (33)

δ1 + δ3 = (x1 − x3)(η1 + η2) − (y1 − y3)(τ1 + τ2), (34)
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2δ2m
2
2 = (m2 − m2

1 − m2
2)δ1 −

√
k12 [(y1 − y2)η2 + (x1 − x2)τ2] , (35)

2δ4m
2
4 = (m2 − m2

3 − m2
4)δ3 −

√
k34 [(y3 − y4)η4 + (x3 − x4)τ4] . (36)

(II) Consider the system of equations for determining stationary points of the
objective function (2):

∂F

∂x∗
= m1

x∗ − x1

|W1P1| + m2
x∗ − x2

|W1P2| + m
x∗ − x∗∗
|W1W2| = 0, (37)

∂F

∂y∗
= m1

y∗ − y1
|W1P1| + m2

y∗ − y2
|W1P2| + m

y∗ − y∗∗
|W1W2| = 0, (38)

∂F

∂x∗∗
= m3

x∗∗ − x3

|W2P3| + m4
x∗∗ − x4

|W2P4| + m
x∗∗ − x∗
|W2W1| = 0, (39)

∂F

∂y∗∗
= m3

y∗∗ − y3
|W2P3| + m4

y∗∗ − y4
|W2P4| + m

y∗∗ − y∗
|W2W1| = 0. (40)

Let us verify the validity of (37). First establish the alternative representations
for the coordinates (21) and (22):

x∗ = x2 − 2m2 δ2 τ2√
k12Δ

, (41)

y∗ = y2 − 2m2 δ2 η2√
k12Δ

. (42)

Indeed, the difference of the right-hand sides of (21) and (41) equals

x1 − x2 − 2m2 (δ1τ1 − δ2τ2)√
k12Δ

and the numerator of the involved fraction can be transformed into

(18)
= 2m2

[
τ1η2(x1 − x2) + τ1τ2(y2 − y1) − τ2η1(x1 − x2) − τ2τ1(y2 − y1)

]

= 2m2 (x1 − x2)(τ1η2 − τ2η1)
(32)
= (x1 − x2)

√
k12Δ.

The equivalence of (42) and (22) can be demonstrated in a similar manner. Now
express the segment lengths:

|W1P1| =
√

(x1 − x∗)2 + (y1 − y∗)2
(21),(22)

=
2δ1m

2

√
k12Δ

√
τ2
1 + η2

1

(31)
=

2mm1√
k12

δ1√
Δ

(43)
and, similarly,

|W1P2| (41),(42)
=

2mm2√
k12

δ2√
Δ

. (44)
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With the aid of relations (21), (41), (43) and (44) one can represent the first two
terms in the left-hand side of the equality (37) as

m1
x∗ − x1

|W1P1| + m2
x∗ − x2

|W1P2| = − m√
Δ

(τ1 + τ2). (45)

The third summand in the equality (37) needs more laborious manipulations.
We first transform its numerator:

x∗ − x∗∗
(21),(24)

= x1 − x3 +
2m2

Δ

[
δ3 τ3√
k34

− δ1 τ1√
k12

]
.

Now write down the following modification:

2m2

[
δ3 τ3√
k34

− δ1 τ1√
k12

]
(27),(28)

=
[
−(η1 + η2) − m2 + m2

3 − m2
4√

k34

(τ1 + τ2)
]

δ3

−
[
(η1 + η2) +

m2 + m2
1 − m2

2√
k12

(τ1 + τ2)
]

δ1

= −
[
(η1 + η2)(δ1 + δ3)

+ (τ1 + τ2)

{
δ1
(
m2 + m2

1 − m2
2

)
√
k12

+
δ3
(
m2 + m2

3 − m2
4

)
√
k34

}]

(20)
= −

[
(η1 + η2)(δ1 + δ3)

+ (τ1 + τ2) {−δ + (η1 + η2) (y1 − y3) + (τ1 + τ2) (x1 − x3)}
]

= δ(τ1 + τ2) − (η1 + η2)
[
δ1 + δ3 + (τ1 + τ2)(y1 − y3) − (η1 + η2)(x1 − x3)

]
−

Δ(x1 − x3)
(34)
= δ(τ1 + τ2) − Δ(x1 − x3).

Finally,

x∗ − x∗∗ = x1 − x3 +
δ(τ1 + τ2) − Δ(x1 − x3)

Δ
=

δ (τ1 + τ2)
Δ

.

Similarly the following equality can be deduced: y∗ − y∗∗ = δ (η1+η2)
Δ , and both

formulae yield

|W1W2| =
√

(x∗ − x∗∗)2 + (y∗ − y∗∗)2 =
δ√
Δ

. (46)
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Therefore, the last summand of equality (37) takes the form

mz
x∗ − x∗∗
|W1W2| = m

δ (τ1 + τ2)
√

Δ

δΔ
= m

τ1 + τ2√
Δ

.

Summation this with (45) yields 0 and this completes the proof of (37).
The validity of the remaining equalities (38)–(40) can be established in a

similar way.
(III) We now deduce the formula (25) for the network cost. With the aid

of the formulae (43), (44), (46) and their counterparts for the segment lengths
|W2P3| and |W2P4|, one gets

m1|W1P1| + m2|W1P2| + m3|W2P3| + m4|W2P4| + m|W1W2|

=
2m√

Δ

(
m2

1 δ1√
k12

+
m2

2 δ2√
k12

+
m2

3 δ3√
k34

+
m2

4 δ4√
k34

+
δ

2

)

(20)
=

2m√
Δ

{
δ1

2
√
k12

(−m2 + m2
2 + m2

1) +
δ3

2
√
k34

(−m2 + m2
3 + m2

4) +
m2

2 δ2√
k12

+
m2

4 δ4√
k34

+
1
2

(η1 + η2) (y1 − y3) +
1
2

(τ1 + τ2) (x1 − x3)

}

(35),(36)
=

2m√
Δ

{
− 1

2
(y1 − y2)η2 − 1

2
(x1 − x2)τ2 − 1

2
(y3 − y4)η4 − 1

2
(x3 − x4)τ4

+
1
2

(η1 + η2) (y1 − y3) +
1
2

(τ1 + τ2) (x1 − x3)

}

=
m√
Δ

{y1η1 + y2η2 + y4η4 + x1τ1 + x2τ2 + x4τ4 − x3(τ1 + τ2 + τ4)

−y3(η1 + η2 + η4)}

(29)
=

m√
Δ

4∑

j=1

(xjτj + yjηj)
(30)
=

√
Δ

4m3
.

For the proof of the two last statements we refer to [7].
(IV) The facilities W1 and W2 providing the solution to the problem (2) lie

inside the quadrilateral P1P2P3P4.
(V) The function (2) is strictly convex inside the convex (due to Assumption

1) domain given as the Cartesian product P1P2P3P4 ×P1P2P3P4. Therefore the
solution of the system (37)–(40) provides the global minimum value for this
function. ��
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The result of Theorem 5 claims that the bifacility Weber problem for four
terminals is solvable by radicals, and thus we get a natural extension of the
three-terminal problem solution given in Theorem 1. An additional correlation
between these two results can be watched, namely that the denominators of all
the formulae for the facilities coordinates contain the explicit expression for the
cost of the corresponding network. It looks like every facility “knows” the cost
of the network that includes this point.

4 Solution Analysis

Analytical solution obtained in the previous section provides one with an oppor-
tunity to analyze the dynamics of the network under variation of the parameters
of the configuration and to find the bifurcation values for these parameters, i.e.
those responsible for the topology degeneracy. We first treat the cases where
either the coordinates of a terminal or the corresponding weight are variated.

Theorem 6. For any position of the terminal P3, the facility W1 lies in the
arc of the circle C1 passing through the points P1, P2 and Q1 = (q1x, q1y) given
by the formula (8) where substitution m3 → m is made. At the same time, the
facility W2 lies in the arc of the circle C3 passing through the points Q1, P4 and
Q̃3. Here Q̃3 is given by (8) where substitution

(x1, y1) (x2, y2) m1 m2 m
(x4, y4) (q1x, q1y) m4 m m3

is applied to.

Example 1. For the configuration
{

P1 = (1, 5) P2 = (2, 1) P3 P4 = (6, 7)
m1 = 3 m2 = 2 m3 = 3 m4 = 4 m = 4

}
,

find the loci of the facilities W1 and W2 under variation of the terminal P3

moving somehow from the starting position at (9, 2) towards P2.

Solution. The trajectory of P3 does not influence those of W1 and W2, i.e. both
facilities do not leave the corresponding arcs for any drift of P3 until the latter
swashes the line L = Q̃3W (Fig. 1). At this moment, W1 collides with W2 in the
point

W =
(

867494143740435+ 114770004066285
√
33+ 14973708000030

√
55+ 19296850969306

√
15

435004929875940
,

581098602680450+ 10154769229801
√
15+ 9689425113917

√
55− 18326585102850

√
33

145001643291980

)

≈(3.936925, 4.048287) which stands for the second point of intersection of the
circles C1 and C3, and yields a solution to the unifacility Weber problem (1) for
the configuration

{
P1 P2 P3 P4m1 m2 m3 m4

}
. When P3 crosses the line L, the solution to

the bifacility Weber problem (2) does not exist (while the unifacility counterpart
(1) still possesses a solution). ��
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The following result gives rise to an alternative geometric construction of the
facility points W1 and W2 for the optimal network.

Theorem 7. In the notation of Theorem 6, the facility W2 lies at the point of
intersection of the circle C3 with the line Q̃3P3. The facility W1 lies at the point
of intersection of the circle C1 with the line Q1W2. The minimal cost of the
network equals C = m3|Q̃3P3|.

Fig. 1. Example 1. Loci of the facilities W1 and W2 under variation of the terminal P3

Theorem 8. Let the circle C1 and the point Q1 = (q1x, q1y) be defined as in
Theorem 6. For any value of the weight m3, the optimal facility W1 lies in the
arc of the circle C1. At the same time, the facility W2 lies in the arc of the 4th
degree algebraic curve passing through the points P3, P4 and Q1. It is given by
the equation
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m2

∣∣
∣∣
∣∣

1 1 1
x q1x x3

y q1y y3

∣∣
∣∣
∣∣

2

[
(x − x4)

2 + (y − y4)
2
]
= m2

4

∣∣
∣∣
∣∣

1 1 1
x x3 x4

y y3 y4

∣∣
∣∣
∣∣

2

[
(x − q1x)

2 + (y − q1y)
2
]
. (47)

We finally treat the case of the variation of the parameter directly responsible
for the inter-facilities connection; the bifurcation equation is now determined
by (20).

Example 2. For the configuration
{

P1 = (1, 5) P2 = (2, 1) P3 = (7, 2) P4 = (6, 7)
m1 = 3 m2 = 2 m3 = 3 m4 = 4 m

}
,

find the loci of the facilities W1 and W2 under variation of the weight m within
the interval [2, 4.8].

Solution. Due to (46), the trajectories of W1 and W2 meet when m coincides
with a zero of the equation δ(m) = 0. The latter can be reduced to an alge-
braic one 24505m20 − 3675750m18 + · · · + 25596924755077 = 0 with a (closest
to m = 4) zero m0,1 ≈ 4.326092. The collision point W yields the solution

to the unifacility Weber problem (1) for the configuration
{

P1 P2 P3 P4m1 m2 m3 m4

}
.

Its coordinates (x∗, y∗) ≈ (4.537574, 4.565962) satisfy the 10th degree algebraic
equations over Z, and this time (as opposed to the variant from Example 1) one
cannot expect them to be expressed by radicals.

This scenario demonstrates a paradoxical phenomenon: the weight m increase
forces the facilities to a collision, i.e. to a network configuration where its influ-
ence disappears completely.

When m decreases from m = 4, the facility W1 moves towards P1 while W2

moves towards P4. The first drift is faster than the second one: W1 approaches
P1 when m coincides with a zero of the equation δ1(m) = 0. The latter can be
reduced to an algebraic one with a zero m0,2 ≈ 3.145546. ��
Theorem 9. If the optimal bifacility network exists, it is less costly than the
unifacility one.

Proof. If the cost (25) is considered as the function of the configuration param-
eters then the following identities are valid:

∂C2

∂m1
≡ m1δ1

m2
√
k12

,
∂C2

∂m2
≡ m2δ2

m2
√
k12

,
∂C2

∂m3
≡ m3δ3

m2
√
k34

,
∂C2

∂m4
≡ m4δ4

m2
√
k34

and
∂C2

∂m
≡ δ

2m3
.

The last one results in ∂C/∂m = δ/(4m3C). Therefore for any specialization of
the weights {mj}4j=1, the function C(m) increases to its maximal value at the
positive zero of δ(m). ��
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5 Five Terminals

In order to extend an analytical approach developed in Sect. 3 to the multifacility
Weber problem, we first demonstrate here an alternative approach for solution
of the four-terminal problem (2). It is based on the reduction of this problem
to the pair of the three-terminal Weber problems. We will utilize abbreviations
{4t2f} and {3t1f} for the corresponding problems.

Assume that solution for the {4t2f}-Weber problem (2) exists. Then the
system of equations (37)–(40) providing the coordinates of the facilities could be
split into two subsystems. Comparing equations (37) and (38) with (6) and (7)
permits one to claim that the optimal facility W1 coincides with its counterpart
for the {3t1f}-Weber problem for the configuration

{
P1 P2 W2m1 m2 m

}
. A similar

statement is also valid for the facility W2, i.e. it is the solution to the Weber
problem for the configuration

{
P3 P4 W1m3 m4 m

}
. From this point of view, it looks

like the four-terminal Weber problem can be reduced to the pair of the three-
terminal ones. However, this reduction should be modified since the loci of the
facilities W2 or W1 remain still undetermined. The result of Theorems 2 and 3
permits one to replace these facilities by those with known positions.

Theorem 10. If the solution to the {4t2f}-Weber problem (2) exists then the
facility W2 coincides with the solution to the {3t1f}-Weber problem for the con-
figuration

{
P3 P4 Q1m3 m4 m

}
. Here Q1 is the point defined by (8) with the substitu-

tion m3 → m. A similar statement is valid for the terminal W1: it coincides with
the solution to the {3t1f}-Weber problem for the configuration

{
P1 P2 Q2m1 m2 m

}

where the coordinates for Q2 are obtained via (8) where the substitution for the
indices 1 → 3, 2 → 4 is made together with m3 → m.

This theorem claims that the four-terminal Weber problem can be solved
by its reduction to the three-terminal counterpart via a formal replacement of
a pair of the real terminals, say P3 and P4, by a single phantom terminal Q2.
This reduction algorithm is similar to that used for construction of the Steiner
minimal tree (firstly introduced by Gergonne as early as in 1810, and 150 years
later rediscovered by Melzak [2]). The approach can be evidently extended to
the general case of n ≥ 5 terminals as will be clarified by the following example.

Example 3. Find the coordinates of the facilities W1, W2, W3 that minimize
the cost

m1|P1W1| + m2|P2W1| + m3|P3W2| + m4|P4W2| + m5|P5W3| (48)
+ m̃1,3|W1W3| + m̃2,3|W2W3|

for the following configuration:
{

P1 = (1, 6) P2 = (5, 1) P3 = (11, 1) P4 = (15, 3) P5 = (7, 11) m̃1,3 = 10
m1 = 10 m2 = 9 m3 = 8 m4 = 7 m5 = 13 m̃2,3 = 12

}
.
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Solution. (I) To reduce the problem to the {4t2f}-case, replace a pair of the
terminals P1 and P2 by the point Q1 defined by the formula (8) where the
substitution m3 → m̃1,3 is made.

Q1 =
(

− 9
40

√
319 +

131
50

,− 9
50

√
319 +

159
40

)
≈ (−1.398628, 0.760097).

(II) Solve the {4t2f}-problem for the configuration
{

P5 Q1 P3 P4
m5 m̃1,3 m3 m4

m̃2,3

}
via

formulae (21)–(24) and obtain the coordinates for the facilities

W2 ≈ (10.441211, 3.084533) and W3 ≈ (7.191843, 5.899268).

(III) Return P1 and P2 instead of Q1 and solve the {3t1f}-Weber problem

for the configuration
{

P1 P2 W3
m1 m2 m̃1,3

}
by the formulae of Theorem 1: W1 ≈

(4.750727, 4.438893) (Fig. 2). We emphasize, that the coordinates of the facilities
can be expressed by radicals similar to the following expression for the minimal
cost of the network

C =
√

10
80

(
4158

√
87087 + 773402

√
231 + 271890

√
319 + 247470

√
143

+ 326403
√

609 + 104181
√

273 − 4455
√

377 + 15216515
)1/2 ≈ 267.229644 .

��

Fig. 2. Example 3. Weber network construction for five terminals
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The reduction procedure illuminated in the previous example, in the general
case should be accompanied by the conditions similar to those from Theorem 5.

We conclude this section with formulation of two problems for further
research. The first one, for simplicity, is given in terms of the last example:

Find the pair of the weights (m̃1,3, m̃2,3) with the minimal possible sum
m̃1,3+m̃2,3 such that the corresponding optimal network contains a single facility.

The second problem consists in proving (or disproving) of the following

Conjecture. The {n terminals � facilities}-Weber problem (3) is solvable by
radicals if � = n − 2 and the valency of every facility in the network equals 3.

6 Conclusions

We provide an analytical solution to the bifacility Weber problem (2) approving
thereby the geometric solution by G. Pick. We also formulate the conditions for
the existence of the network in a prescribed topology and construct the solution
for five terminals.

Several problems for further investigations are mentioned in Section 5. One
extra problem concerns the treatment of distance depending functions like
FL(P ) =

∑n
j=1 mj |PPj |L with different exponents L ∈ Q\0. The choice L = −1

corresponds to Newton or Coulomb potential. It turns out that the stationary
point sets of all the functions {FL} can be treated in the universal manner [9].
We hope to discuss these issues in forthcoming papers.
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